270 GOVERNING EQUATIONS FOR A DEFORMABLE SOLID CHAP. 10

. . . . £3)
ariational statement is called Reissner’s principle (see Rel. ¢
Thl?a\)/ 1rTransf()rm Iz to TI, by requiring the stresses to satisfy the stress
displacement relations. Hint: Note (10-101). ' .

(b) TransformIlg to —T1, by restricting the geometry to be h.near (6" =0
and e;; = (. ; + uj,:)/2) and requiring the stresses to satisfy the stress
equilit])rium équations and stress boundary conditions on Q,. Hint:
Integrate o;je;; by parts, using (10-81).

10-29. Interpret (10-90) as
]
lo = —— I
fo (L’PQ

where Py is a force applied at Q in the direction of the displacement measure, dg.

11

St. Venant Theory of '
Torsion-Flexure of
Prismatic Members

11-1. INTRODUCTION AND NOTATION

A body whose cross-sectional dimensions are small in comparison with its
axial dimension is called a member. 1If the centroidal axis is straight and the
shape and orientation of the normal cross section are constant,i the member
is said to be prismatic. We define the member geometry with respect to a
global reference frame (X, X, X3), as shown in Fig. 11-1. The X, axis is
taken to coincide with the centroidal axis and X ,, X', are taken as the principal
incrtia dircctions. We employ the following notation for the cross-sectional
properties: '

A = [[dx,dx, = [[dA
I, = {{(x5)* da (11-1)
Iy = [(x,)? da

Since X,, X5 pass through the centroid and are principal inertia directions,
the centroidal coordinates and product of inertia vanish:

1 tf
Xz,c=Zijsz=0 x3,c=;1~Hx3dA=o (11-2)

123 = j’yxe:, dA =0

One can work with an arbitrary orientation of the reference axes, but this will
complicate the derivation.

St. Venant’s theory of torsion-flexure is restricted to linear behavior. 1t is an
exact linear formulation for a prismatic member subjected to a prescribed .

1 The case where the cross-sectional shape is constant but the orientation varies along the
centroidal axis is treated in Chapter 15.
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272 TORSION-FLEXURE OF PRISMATIC MEMBERS CHAP. 11

distribution of surface forces applied on the end cross sections. Later, in
Chapter 13, we modify the St. Venant theory to account for displacement
restraint at the ends and for geometric nonlinearity.
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Fig. 11-1. Notation for prismatic member.

The distribution of surface forces on a cross section is specified in terms of
its statically equivalent force system at the centroid. Figure 11-1 shows the
stress components on a positive face. We define F., M, as the force and
moment vectors acting at the centroid which are statically equivalent to the
distribution of stresses over the section. The components of I ., M, are called
stress resultants and stress couples, respectively, and their definition ecquations
are
Fy = ffo,,dA  F,={[o,,dA  F; = [[o,;dA

M, = ”(xzam — X30,)dA (11-3)
M, = ”X;zdu dA
My = —[[x30,, dA4

The internal force and moment vectors acting on the negative face are denoted
by F_, M_. Since

F.=—-F, M_=-M, (11-4)
it follows that the positive sense of the stress resultants and couples for the
negative face is opposite to that shown in Fig. 11-1.

We discuss next the pure-torsion case, i.e., where the end forces are statically
equivalent to only M,. We then extend the formulation to account for flexure
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and treat torsional-flexural coupling. Finally, we describe an approximate
procedure for determining the flexural shear stress distribution in thin-walled
sections.

11-2. THE PURE-TORSION PROBLEM

Consider the prismatic member shown in Fig. 11-2. There are no boundary
forces acting on the cylindrical surface. The boundary forces acting on the end
cross sections are statically equivalent to just a twisting moment M,. Also,
there is no restraint with respect to axial (out-of-plane) displacement at the ends.
The analysis of this member presents the pure-torsion problem. In what
follows, we establish the governing equations for pure torsion, using the
approach originally suggested by St. Venant.

B¢

Fig. 11-2. Prismatic member in pure torsion.

Rather than attempt to solve the three-dimensional problem directly, we
impose the following conditions on the behavior and then determine what
problem thesc conditions correspond to.

L. Each cross section is rigid with respect to deformation in its plane,
i€, &y = &3 = Y53 = 0.

2. Each cross section experiences a rotation w; about the X, axist and
an out-of-planc displacement u,.

These conditions lead to the following expansions for the in-place displace-

ments:
Uy = —WyX3

(11-5)
Uz = +wiX,
The corresponding linear strains are
8y = &3 = Y33 =0
&y = Uy g (11-6)

Yiz = Uy 2 + Uy g = Uy 3 — X3y
Viz = Ug,3 + Uz g = Uy 3 + X0y

T Problem 111 treats the general case where the cross section rotates about an arbitrary poiat.
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Now, the strains must be independent of x, since each cross section is
subjected to the same moment. This requires
Wy, = const = k; (11-7)
uy = y{xz, X3)
We consider the left end to be fixed with respect to rotation and express
Wy, Uy aS
wy = kX (11-8)
uy = ky¢,
where ¢, = ¢,(x2, x3) defines the out-of-plane displacement (warping) of a cross
section. The strains and stresses corresponding to this postulated displacement
behavior are
g =8 =& = Y23 =0
Y12 = kil 2 — x3) (11-9)
Vis = ki(dy s + x1)
and
011 = 033 = 033 = 023 =0
012 = Gyia = Gky(¢r. 2 — x3) = 012(X2. X3) (11-10)
013 = Gay3 = Gky(¢y, 3 + x3) = 013(x3, X3)
We are assuming that the material is isotropict and there are no initial strains.
One step remains, namely, to satisfy the stress-equilibrium equations and
stress boundary conditions on the cylindrical surface. The complete system of
linear stress-equilibrium equations, (10-49), reduces to

01,2+ 031,3=0 (11-11)

Substituting for the shearing stresses and noting that Gk, is constant lead to
the differential equation

&2 02 R
+ 2 ) b = V2 = 0 (11-12)

ax3  oxt
which must be satisfied at all points in the cross section.

"The exterior normal n for the cylindrical surface is perpendicular to the X,
direction. Thena,, = 0, and the stress boundary conditions, (10-49), reduce to

Pui = On2021 + %303 =0 (11-13)
Using (11-10), the boundary condition for ¢, is
“n2(¢7r,2 — X3) + ’xns(d’z,,s +x;) =0
2 {

{
T = Olyp Xy T 03X (on S)

on

(11-14)

1 Problem 11-3 treats the orthotropic case.
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The pure-torsion problem involves solving V3¢, = 0 subject to (11-14). Once
¢, is known, we determine the distribution of transverse shearing stresses from
(11-10). Note that ¢, depends only on the shape of the cross section.

The shearing stress distribution must lead to no shearing stress resultants:

Fy={fo,,d4 =0 ‘
_ _ (a)
F3 ‘H.O-I}dA =0

Hﬁqﬁwzgfﬂcm—so (b)
X, X3

To proceed further, we need certain integration formulas. We start with

H (i\f—j dA sz; o dS (11-15)

which is just a special case of (10-81). Applying (11-15) to §§ V¥ dA leads to
QGreen’s theorem,
J\J‘VZQ/] da :§ (anl _L-l/f‘ + 0y3 g_lj'{') ds
OXZ (".\'3

N
If  is a harmonic function (i.e., Vi) = 0), Green’s theorem requires
3
—dS =
§ P 0 (c)

Now, ¢, is a harmonic function. For the formulation to be consistent, (11-14)
must satisfy (c). Using (11-15), (c) transforms to

é;(anzxs — y3Xp)dS = jf ({T{; X3 — 5\—; Xz) dA =0 (@

Since é¢,/0n is specified on the boundary, we cannot apply (11-15) directly
to (b). In this case, we use the fact that V2¢, = 0 and write

This requires

(11-16)

O SR AN ) ,
0x; T 0x, <Xj ox, + A, \;(T(; (=23 (€
Integrating (e),
0, oo,
H o, 3€xf m S =23 0

and then substituting for the normal derivative, verifies (b).
The constant k, is determined from the remaining boundary condition,

M, = [f(x3015 — x30,,)d4 (11-17)
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We substitute for the shearing stresses and write the result as

M, = GkJ (11-18)
where J is a cross-sectional property,
¢ &\
J = U <x§ + x3 + x; &3 — X3 R—é) dA (11-19)

At this point, we summarize the results for the pure-torsion problem.

1. Displacements

uy = ki,
Uy = —mX;
Uy = WX,
wy = kyx;
M
ky = *Tl“
GJ
2. Stresses
M, [dd, )
VI
</> 2 (11-20)
M, (¢
013 = —= ((::j + ‘Cz)
3. Governing Equations
inA: Vip, =0
on S: Qe JOn = ,5X3 — 03X,

It is possible to obtain the exact solution for ¢, for simple cross sections.

The procedure outlined above is basically a displacement method. One
can also use a force approach for this problem. We start by expressing the
shearing stresses in terms of a stress function i, so that the stress-equilibrium
equation (Equation 11-11) is identically satisfied. An appropriate definition is

_
012 = 5:;

(11-21)

013 = 3
The shearing stresses for the 4, v directions, shown in Fig. 113, follow directly
from the definition equation
&y
v
oy

O = — %%
’ o4

Oi =

(11-22)
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Taking § 90° counterclockwise from the exterior normal direction, and noting
that the stress boundary condition is ¢4, = 0, lead to the boundary condition
for y,

Y = const on S (11-23)

We establish the differential equation for Y by requiring the warping function
¢, to be continuous. First, we equate the expressions for ¢ in terms of Y and ¢,

M
O =Y ;= ‘J'L(q)z,z - X3)

(a)
M
O3 =~y , = “}*1(05:.3 + X;)
Now, for continuity,
$r23 = ¢y 32 (b)
Operating on (a), we obtain
Vi = —Z—A—i}- (<)
It is convenient to express ¥ as
M,
= — -24
- (11-24)
The governing equations in terms of i aret
M, 3y
=
‘X3
- 11--25
po M 0D -
T13 J 0x,
and
Vi = -2 {in A)
V= C; (on boundary S;) (11-26)

Substituting (11-25) in the definition equation for M, leads to the following

expression for J:
v o
J- - ﬁ(h f“’)m @
le CX3

Applying (10-81) to (a) and noting] that

— f}g xjo,; dS = A; = area enclosed by the interior boundary curve, S; (b)
Si

[¥ls, = C:i = const

T Equations (11-26) can be interpreted as the governing equations for an initially stretched
membrane subjected to normal pressure. This interpretation is called the “membrane analogy.”
See Ref. 3.

1 The S direction is always taken such that n — S has the same sense as X, — X;. Then, the
+ S direction for an interior boundary is opposite to the + S direction for an exterior boundary
since the direction for n is reversed. This is the reason for the negative sign on the boundary integral.
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we can write B
J = ijl// dA + 2ZAiCi (11-27)

where ¥ = 0 on the exterior boundary.
To determine the constants C; for the multiply connected case, we use the

fact that ¢, is continuous. This requires

oy
——dS =0 11-28)
3% as (
for an arbitrary closed curve in the cross section.
X3
14
"

X3

"n

Fig. 11-3. Definition of n-s and i-v directions.

X;3

X3

Fig. 11-4. Graphical representation of sector area.
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Consider the closed curve shown in Fig. 11-4. The shearing strain y,g is
given by ,
Yis = %s2¥12 + ®s3Vi3 (a)

Using (11-9), we can write (a) as

Vis = Ki(tsa®e 2 + %530, 3 — Xablsy -+ Xa0g3)

~ K, (8‘1’* + p) (11-29)

és
where p is the projection of the radius vector on the outward normal.f The

magnitude of p is equal to the perpendicular distance from the origin to the
tangent. Integrating between points P, Q, we obtain ‘

S
[ s dS = k@ g = 6r + 24pg) (11-30)
where

S
Apo = 3 ° p dS = sector area cnclosed by the arc PQ and the
Q Sp -
radius vectors to P and Q.

Finally, taking P = Q.1
yys dS = 2k, Ag - (11-31)

where Ag denotes the area enclosed by the curve. Since o,; = Gy,;, we can
write

M
$o,5dS = 2Gk,Ag = 2 —J—l As (11-32)

Note that the + S direction for (11-32) is from X, toward X ;. Also, this result
is independent of the location of the origin.

Instead of using (11-9), we could have started with the fact that the cross
section rotates about the centroid. The displacement in the + S direction fol-
lows from Fig. 11-4:§

us = w(i; X 7+i5) = wp = kyxyp (11-33)

Substituting for ug in
Vis = Us.1 + Uy s (11-34)

and noting that u; = k¢, lead to (11-29).
Using (11-22), we can write

s = —ob = LY (11-35)

+ This interpretation of p is valid only when S is directed from X to X3, i.e., counterclockwise
for this case.

1 See Prob. 1114 for an alternate derivation.

¥ This development applies for arbitrary choice of the + 5 direction. The sign of p is positive
if a rotation about X, produces a translation in the +S direction. Equation (11-29) is used to
determine the warping distribution once the shearing stress distribution is known. See Prob. 11-4.
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Then, substituting for o5 in (11-32), we obtain

3@ W 4s = —24; (11-36)

s cn

where n is the outward normal, A5 is the area enclosed by S, and the +S sense
is from X, to X 5. This result is valid for an arbitrary closed curve in the cross
section. We employ (11-36) to determine the values of i at the interior bound-
aries of a multiply connected cross section.

It is of interest to determine the energy functions associated with pure tor-
sion. When the material is linearly clastic and there are no initial strains, the
strain and complementary energy densities are equal, ie, ¥V = V" = io7e.

We let

V = ([ V dA = strain energy per unit length (11-37)
A
The strain energy density is given by
G 2
V=50l + 1) (@)
Substituting for {2, V13>
GI? v

V= ~“2'1‘ e 2 — x3) + (@3 + x2)*] (b)

and integrating (b) over the cross section, we obtain
V =1GJk} (11-38)

Since V* = V,and M, = GJk,, it follows that

_ ! 5 5 M}
V* = E‘G‘z‘ (612 + 0'13)dA = ié—j (11-‘39)

B

X

dwy
wy +*md,\1

Fig. 11-5. Differential element for determination of the rotational work.

Instead of integrating the strain-energy density, we could have determined
the work done by the moments acting on a differential element. Consider the
element shown in Fig. 11-5. The boundary forces acting on a face are statically
equivalent to just a torsional moment. Also, the cross sections are rigid in

SEC. 11-8. THIN-WALLED OPEN CROSS SECTIONS 281

their plane and rotate about X ;. The relative rotation of the faces is

da);_
Wy + adxl = wy = kydx, @

and the first-order work done by the external forces due to an increment in
reduces to l

Now oW, = §pT AudS = M, Ak, dx, (b)
Wi = 8V = [{{ 6V dx, dx, dx; = 6V dx, ©
for an elastic body. Then, expanding 6V,
8V = ;i{‘ Ak, = M, Ak, (d)
and it follows that !
av
o =M, = GJk,
7 = 1GIK? (11-40)

11-3. APPROXIMATE SOLUTION OF THE TORSION PROBLEM FOR
THIN-WALLED OPEN CROSS SECTIONS

Wg consider 'ﬁrst the rectangular cross section shown in Fig. 11-6. The exact
solution for this problem is contained in numerous texts (e.g., see Art. 5-3 of
Ref. 1) and therefore we will only summarize the results obtained.

X3
w 2\ } |
dj?
- 61— '5 X,
df2
. . 4 3
e tj2—fe—1/2—~|

Fig. 11-6. Notation for rectangular section.
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When ¢ < d, the maximum shearing Stress g, OCCUrs at x, = +1t/2,x3 =0
(points 5, 6). The exact expressions are

de?
I =Kz
: (11-41)

M
iO'mnXI = - Kzt
where
192 [t ! A
_ It — S tan} -
Ki=1 n® (d>n_—o,z}.... (2n +1)° e
8 1 !
Ka=1l- X Gugifcosbi

Values of K, K, for d/t ranging {rom 1 to 10 are tabulated below:

B KK
1 0.422 0.675
2 .687 930
3 789 985
4 .843 997
5 873 999

10 0.936 1.000

If t « d, we say the cross section is thin. The approximate solution for a
thin rectangle is
J

X

1de?

M
013 ~ 271* X, = ZG]\'IXZ
(11-42)
. & X3X3

_ \?
1//z(§> - x3

(We take d/t = oo in the exact solution.) The shearing stress ¢, 3 varies linearly
across the thickness and

LMy 3M,
e B

A view of the warped cross section is shown in Fig. 11-7. .
Since the stress function approach is quite convenient for the analysis of
thin-walled cross sections, we illustrate its application to a thin rectangular

s
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cross section. Later, we shall extend the results obtained for this case to an
arbitrary thin walled open cross section. The governing equations for a simply
connected cross section are summarized below for convenience (see (11-26),
(11-27)):

Vi = =2 (in A)

Yy =0 (on the boundary)
M, op
VAT @)
J = 2§y dA

where the S direction is 90° counterclockwise from the n direction.} Since ¢ is
small and ¢,, the shearing stress component in the thickness direction, must

e e T e

uy = kixyx3

N]Q.\y

ky : \ //1)3‘
i - 5
6 X,
k4t
4 -

Xp,uy
Fig. 11-7. Warping function for a rectangular cross section.
vanish on the boundary faces, it is reasonable to assume ¢, = 0 at all points

in the cross section. This corresponds to taking i independent of x;. The
equations reduce to

a: _
agl =7
2 . (b)
17/_ =0 at Xq = i;
Solving (b), we obtain i
_ t?
= 2 —
| l// X35 -+ 4
2 _
J= zdL/2 ¥ dx, = Ldr® ©
M ap M
f = =2

t This applies for X; counterclockwise from X,. The general requirement is the n — S sense
must coincide with the X,-X, sense.
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The expression for ¥ developed above must be corrected near the ends

(x5 = +d/2) since it does not satisfy the boundary condition,

1
J:O at x3 = i% (d)

7

and Ga Actually, the moment due to the approximate linear expansion for
0,5 is equal to only one half the applied moment:

This will lead to ¢, # 0 near the ends, but will have a negligible effect on J

t/2 M 1 1
My, =4d J Xy013 dXy = »J—1—<é (lt3> =3 M, {e)

—tj2

The corrective stress system (o) carries M /2. This is reasonable since, even
though o, is small in COmpArison 10 Oy, its moment arm 13 large.

X5

(ﬁ/ X

M

Fig. 11-8. Notation for thin-walled open cross section.

We consider next the arbitrary thin-walled open cross section shown in
Fig. 11-8. The S curve defines the centerline (bisects the thickness) and the n
direction is normal to S. We assume o, = 0 and take y = —n® + t?/4. This
corresponds to using the solution for the thin rectangle and is reasonable when
S is a smooth curve. The resulting expressions for J and o5 are

=4 & *ds
M
o5 = 271}1 (11-43)
M
GIS, max — —j‘l— tmax = le Zmax

e e St e e e
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The results for a single thin rectangle are also applied to a cross section
consisting of thin rectangular elements. Let d;, t; denote the length and thickness
of element i. We take J as

J=iydr (11-44)

As-an illustration, consider the symmetrical section shown in Fig. 11-9. Apply-

ing (11-44), we obtain
J = 3Qb} + dytd)

The maximum shearing stress in the center zone of an element is taken as

M
G —L1, = Gkt

mi = J (1 1 “45)

In general, there is a stress concentration at a reentrant corner (e.g., point 4 in
Fig. 11-9) which depends on the ratio of fillet radius to thickness. For the case

_Llr by —
. P

— d w

A

vz 7 7

Fig. 11-9. Symmetrical wide-flange section.

of an angle having equal flange thicknesses, the formulaf

t
Chitlet =~ O <1 + 2{;)
S

where 7, is the fillet radius and o,, is given by (14-45), gives good results for
r;/t < 0.3. The stress increase can be significant for small values of r,/t. For
example, ggy = 3.50, for r, = 0.1t. Numerical procedures such as finite
differences or the finite element method} must be resorted to in order to obtain
exact solutions for irregular sections.

(11-46)

+ See Ref. 2 and Appendix of Ref. 9.
i See Ref. 4.
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11-4. APPROXIMATE SOLUTION OF THE TORSION PROBLEM FOR
THIN-WALLED CLOSED CROSS SECTIONS

The stress function method is generally used to analyze thin-walled closed
cross sections. For convenience, the governing equations are summarized below
(see (11-26), (11-27), (11-36)):

Vi = 2 (in A)

v =0 (on the exterior boundary)

¥ =C, (on the interior boundary, ;)

J =2y dAa +2)CiA;  (A; = area enclosed by S))
M, 0 (n is the outward normal for S

01 = T o and +5 sense from X, toward X )
§ W 45 = 24,
on

We consider first the single cell shown in Fig. 11-10. The S; curve defines
the centerline. Since there is an interior boundary, we have to add a term

|

Cy

‘~f/2 —»‘~—r/2*$

Sect. £~-F£

Fig. 11-10. Single ciosed ceil.

involving C; to the approximate expression for i used for the open section.
We take i as

b=y + :
t* 2 ¢y 2n (11-47)
=yorty (1 - 7)

where /° represents the contribution of the interior boundary. This expression
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satisfies the one-dimensional compatibility equation and boundary conditions,
2%
on*
V=0 atn = +/2

v =C,  atn= —tf2 @
and is a reasonable approximation when S is a smooth curve.
Differentiating 7,
o C.
n = 2n — T ‘é“s- =0 (b)
and substituting (b) in the expressions for the shearing stress components lead to
Gin =0
- (zn ; C}) (11-48)
= ofs + ai;

The tangential shearing stress varies linearly over the thickness and its average
value is 09,. We let g be the shear stress resultant per unit length along S,
positive when pointing in the + S direction,

tf2
q = f s dn (11-49)
—t/2
and call q the shear flow. Substituting for o5, we find
M
q = ,7_1. Ci = oSst (11-50)

The additional shearing stress due to the interior boundary (ie., closed cell)
corresponds to a constant shear flow around the cell. One can readily verifyt
that the distribution, ¢ = const, is statically equivalent to only a torsional
moment, Mg, given by

=294, (11-s1)
The torsional constant is determined from
J = 2[§(/7 dA + 2C 4, = M (/Gk, (a)
Substituting for ¥ using (11-47), we obtain
I (1) ¢
J=J"+J (11-52)

= tgsq 7 dS JO=2C4,

Equation (a) was established by substituting for the shearing stresses in terms
of i in the definition equation for M, and then transforming the integrand. We
could have arrived at (11-52) by first expressing the total torsional moment as

M, = M{ + Mj (11-53)

t See Prob. 11--5.
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where M9 is the open section contribution and MY is due to the closure. Next,
we write

M, = GkJ M = Gk J° M§ = Gk, J* (11-54)
Then,
J=J"+J (11-55)
and it follows that
J° Je
{i :7M1 Mcl :':]7 Ml (11_56)
Finally, using (11-51), we can express J¢ as
JE = MY(My/]) = 2Aa[a/(M1/J)] (11-57)
This result shows that we should work with a modificd shear flow,
C = q/(M,/J]) (11-58)

rather than with the actual shear flow. Note that C = C, for the single cell.
It remains to determine C; by enforcing continuity of the warping function
on the centerline curve. Applying (11-32) to S,;, we have

§ oisdS = 2%1 Aq (11-59)

. . ¢ Se
Substituting for ¢{s, ‘

M, C,
0S¢ = qft = —— —=-
is = {/ I

leads tof
24 ct

© =R dsyi

One should note that C; is a property of the cross section. Once Cy is known,
we can evaluate J from (11-52) and the shearing stress from

M c
o5 = ifl- (it + ti) (11-61)

(11-60)

Example 11-1

Consider the rectangular section shown. The thickness is constant and a, b are centerline
dimensions. The various cross-sectional properties are

1S 2a + b
A S Gl
t t
ab[ 0 1.3 2%
Clua%—b J? = 5t°[2(a + b)]
C_?,azbzt
T a+b

t See Prob. 11-6.
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We express J as
For this section,

We consider a > b. Then,

The section is said to be thin-walled when ¢ « b. In this case, it is reasonable to neglect
Jovs. JC

Fig. E11-1

] o
| |

t — ; — \) T 5.q a
M

o ed

The stress follows from (11-61),

M, C, t? ois
=t ) =t 2
Gs=T Nt TS T

2 1+ht—0[
Cc, a)b~ \b

If the section is thin-walled, we can neglect the contribution of ¢, i.e., we can take

where, for this section,

O35 X 0%s = qft = _A/[l
244t

We consider next the section shown in Fig. 11—11. Rather than work with
\, it is more convenient to work with the shear flows for the segments. We
number the closed cells consecutively and take the +§ sense to coincide with
the X,-X3 sense. The + S sense for the open segments is arbitrary. We define
q; as the shear flow for cell j and write

M )
g =—=C; (11-62)
J
Note that C; is the value of { on the interior boundary of cell j and the shear
flow is constant along a segment. The total shear flow distribution is obtained
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Fig. 11-11. Cross section consisting of closed cells
and open segments; A, and A, are centerline areas.

M,y

by superifnposing the individual cell flows. Then, the shear flow in .the segment
common to cells i and j is the difference between ¢; and g;. The sign depends
on the sense of S.

1\':{ 1

q=qy — Q2= T(Cl —~ Ca) for §, (11-63)

qg=4q: — ¢ for S,

The shearing stress is assumed to vary linearly over the thickness. For con-
venience, we drop the subscripts on gys and write the limiting values as

o= +0¢"+ °

. M e — gt = Mi(Coa 11-64)
()':‘—:]*t 0"——([/t—~‘]< ) (

where

1t remains to determine C;, C,, and J.
We have shown (see (11-55)) that

Jo=J0 4 J @)
and
M =M, (b)
vt

We determine J° from
Jo= 3, %frf’ ds (11-65)

segments
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Substituting for M$,T
M = 2914, + 2924,
- 2%1((:@1 + Cady) ©
in (b) leads to
’ JO = 2A4:C; + 4,C)) (11-66)

The constants C; are obtained by enforcing continuity of ¢, on the centerline
of each cell. This can also be interpreted as requiring each cell to have the same
twist deformation, k2%

v .
§ (q/t)dS =2 71 4, i=12 (11-67)
S; g

Substituting for g in terms of C and letting

dS ds “dS
dyy = § E“‘ dyy = § o iy = Uy = *“J‘ - (11“‘68)
Sy t S5 4 P

where ay, involves the segment common to cells 1, 2, the continuity equations
take the following form:
a11C1 + (l12C2 = 2A1
a;2Cy + a2,C; = 24,
We solve this system of equations for C,, C,, then determine J¢ with (11-66),
and finally evaluate the stresses with (11-64). o
We can represent the governing equations in compact form by introducing
matrix notation. The form of the equations suggests that we define

Gy JAx} [au 6112]
C = A = . a = 11—70
{C;} lAz iz 42 ( )

With this notation,

(11-69)

i

c . T
J¢ = 2A"C (11=71)
aC = 2A
Substituting for A in the expression for J¢,
J = CTaC (a)

and noting that J° is positive, we conclude that a must be positive definite.
The complementary energy per unit length along the centroidal axis is defined

by (11-39),
- 1 M3
N :EHU%SME%{]- (b)
1 We apply (11-51) to each cell.
I See (11-32).
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Since o, varies linearly over the thickness, the open and closed stress dis-
tributions are uncoupled, i.e., we can write

17* ’open + !7*

<~
3
I

dueto ff
where
I P (M%> <J>
open . A O =54 T T
o = ) 26\ 7 )\U s
7l = L 2% 2 L grag

L0

It is reasonable to neglect the open contribution when the section is thin-walled.

Example 11-2

The open-section torsional constant for the section shown is

Jo= L[} + 2b + d + W + hi3] (a)
Applying (11-68) to this section, we obtain

A, = hd

Ay = hb
1 h

ayy = —(h+ 2d) + — (b)
1y ty

) h

dy2 = ""tz"

1 h
az3 = —(h + 2b) + —
ty ts

and the following equations for Cy, C; and J.

t
(1 sy 3(I>Cl - <1)C2 = 2dt,
t; h 9

»G%cl+bwfi+zgcl=%u ()
t, ty h

J¢ = 2(Cyd + C3b)

J=J0+ J

Finally, the shear stress intensities in the various segments are

M, (C, - C; ) 4

== t )

01.2 7 ( 5 + 2/ (
M, [(C

0‘2-—-—7}'<71%+t1>

o3 = 7 3
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. Fig. E11-2
i3 3l Iy
4 s %3 } b
—————— A I ——— |
il ! f | (T
Si-1 - ! H-52
Ay \JMI I {oy, 42 h
] f !
ty— | ty— | b e | b1
A Lo ————- (I p—— J
01 l 02'
| | |
Q;—ﬂxz s d ! b |
My
When d = b,
2bt
C,=GC = 1_5 ©
1+2-—
h

and the section functions as a single cell with respect to shear flow.

11-5. TORSION-FLEXURE WITH UNRESTRAINED WARPING

Consider the prismatic member shown in Fig. 11~12. There arc no boundary
forces acting on the cylindrical surface. The distribution of boundary forces

X
X2 2

PzL(L T X X; s

,P2y |
| L |

Py
" Fig. 11-12. Prismatic member in shear loading.

on the cross section at x; = L is statically equivalent to a single force P,1,,
acting at the centroid. Also, the end cross sections are not restrained against
warping, ie., out-of-plane displacement. In what follows, we describe St.
Venant’s torsion-flexure formulation for this problem. Later, in Chapter 13,
we shall modify the theory to include restraint against warping.
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We start by postulating expansions for the stresses. The stress resultants and
couples required for equilibrium at x; are
F1=F3=A./[1=M2:
Fp =0, (a)
M3 = Py(L — xy)
Introducing (a) in the definition equations for the stress resultants and couples
leads to the following conditions on the stresses:

ffo1dA = [[x301, dA = 0
{fx201; dA = Po(L — x))
{fo1,dA = P, (b)
flo13dd =0
”(xza.m — X30312)d4 = 0
The expansion, .
M;

11 = ==
3

P
nx~f@~mm (©
3

satisfies the first three conditions (i.e., F{, M, M3) identically since

‘”.XZ dA = jIX2X3 d4 = 0

([x2dA = I @

The last three conditions (i.c., F,, F3, M) requirc oq,, 013 to be independent
of xy. This suggests that we consider the following postulated stress behavior:

M P
O1r = *‘j—:“xz = ‘132‘([ — X1)x3
012 = 012(X2, X3) (11-73)

013 = 013(X2, X3)
032 = 033 = 023 =0

Introducing (11-73) in the stress-equilibrium equations and stress boundary
conditions for the cylindrical surface leads to

P,
; + ¢ +=x; =0 in A
031,2 031,3 I X2 (in 4) (11;74)

%2021 + %3031 =0 (on §)

At this point, we can either introduce a stress function or express (11-74) in
terms of a warping function. We will describe the latter approach first.
The displacements can be found by integrating the stress-displacement rela-
tions. We suppose the material is linearly elastic, isotropic with respect to the
X,-X; plane, and orthotropic with respect to the axial direction. This is a
convenient way of keeping track of the coupling between axial and in-plane
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deformation. Substituting for the stresses in (10-74), we obtain

i P,
= = — = ———— L — >

&1 U, 1 E; 011 E113( X)X,

y v P
&2 = Uz, 2 = —Elcu = Ellz(]-f — X1)x; (@)

3
v v P

&3 = U3, 3 = ’“é 011 = “l'{—I’Z(L = Xg)X2
‘13

1 .
Vizg = U,z + Uz = renkatin function of x,, x3
1

1 .
Vi3 = Uy 3 + Uz 1 = —G——O'13 = function Ofx;, X3
1

V23 = Uz, 3 + Uz 2 =0

Integrating the first three equations leads to

P o,
Uy = —Exjs (Lx; — 3x9)x2 + fi(x2, X3)
U, = XE}')*Z— (L - xl)x% -+ fz(xl. X3) (b)
2EI, “ ’
v P .
s = =2 (L = x()Xz%3 + fo(x1, X2)

~ El,
The functions fi, f5, f3 are determined by substituting (b) in the last three

equations. We omit the details and just list the resulting expressions, which
involve scven constants:

Ji=Cy + Csxz + Csx3 + P(x2, X3)
fz = C2 - C5X1 -+ C4X3 e /€1X13C3
Vi Py 2 P, 1 2
— (L — X)) — = (L — %
7ET, (L x1)x3 + 2E,13( 3X3)X1

f3 = Cs — Cexy — Caxa + kyxixs

(c)

The constants Cy, Ca, ..., Ce are associated with rigid body motion and k;

is associated with the twist deformation.t N
We consider the following displacement boundary conditions:

1. The origin is fixed:
Uy = Uy = U3z = 0 at (0, O, 0)

2 A line element on the centroidal axis at the origin is fixed:
Up g = U3, 1 = 0 at (O, 0, 0)

+See Eq. (11-5).



296 - TORSION-FLEXURE OF PRISMATIC MEMBERS CHAP. 11

3 Aline element on the X, axis at the origin is fixed with respect to rotation
in the X ,-X 5 plane:
Uy 3 =90 at (0, 0, 0)
These conditions correspond to the “fixed-end” case and are sufficient to
climinate the rigid body terms. The final displacement expressions are

P .
U; = ——Elja (LXI - %‘X%)Xz + ¢()&2, ’\3)
3
vi Py _ .. ,_1?_2_,_ 1x? — M kxgx (11-75)
Uy = S (L — x)(x3 x5 + 2E113< X1 3 1X1X3
4y - V1P (L — x1)x2%3 + kix1%3 '

T ElL
One step remains, namely, to satisfy the equilibrium equation and boundary
condition. The transverse shearing stresses are given by

P .,
“3“‘712 =, — Kixs + ;%7%(_\"% — x3)
N s (11-76)
: = ]s +k X _X}ﬁ{x X
~G~;O‘13 = 0,3 1X2 E13'2”3

Substituting for the stresses in (11-74), we obtain the following differential
equation and boundary condition for ¢:

s
vig = L2(2i LY o
I3\ E G, B
p N 5 11=77
d Vi X3 — X3 .
5%% = ky(n2X3 — %u3X2) + 5}57; [O‘n?. (“”j““) + %332-\3]
The form of the above equations suggests that we express ¢ as
P2 by + bx3 11-78
¢ = ki + 'é*;:,;(fﬁzr 5x3) + I, (p2a + 3%2 ( )

where ¢, is the warping function for pure torsion and ¢, an@ d);d are harmonic
functions which definc the warping due to flexure. Substituting for ¢ leads
to the following boundary conditions for ¢, and ¢34

_Cidiz r 1

_ L 2
on 2 X2
2 2
0920y (2255 1 gpxaxs (11-79)
on 2

One can show, by using (11-15), that
§S/i%~ s =0
cn

é;éff_’?ﬁds =0

cn
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and therefore the formulation is consistent. Terms involving v{/E are due to
in-plane deformation, ie., deformation in the plane of the cross section, and
setting v;/E = 0 corresponds to assuming the cross section is rigid. Then, ¢,,
defines the flexural warping for a rigid cross section and ¢,y represents the
correction due to in-plane deformation.
The shearing stress is obtained by substituting for ¢ in (11-76). We write
the result as
G1j = Oyj,r + 0yr + 0354 (J=2,3) (11-80)

where oy;,, is the pure-torsion distribution and 64;,,, 01;, 4 are flexural distri-
butions corresponding to ¢,, and ¢a,:

P,
12,y = T((ﬁznz - %x%)
3

P
C13,r = 73 (ber, 3
3 (11-81)

E

viG\ P
O13,4 = ( IE 1) }_z (24,3 — Xx2X3)
3

The pure torsion distribution is statically equivalent to only a torsional mo-
ment, M, , = Gk, J. One can show thatf ’

‘”0‘12‘»« dA = P, ”ffm,r dA =0

jyo‘ll,ddA =90 Sjal.'i,ddA =0
Note that the shear stress due to in-plane deformation does not contribute
{o 1)2.

The total torsional moment consists of a pure torsion term and two flexural
terms,

viG¢\ P
012,4 = (iJ)‘I“% [h24.2 + 5(x3 + x3)]
3

(11-82)

M, = GiyJ + 22 (sz,. 4 52,,> (11-83)
I, E
where
Sy = ﬁ(‘%xaxg ~ X3, 2 + X262y 3)dA
S = ”(”‘3-‘@.-‘55 — 5x3 4 Xara, 3 — X3aq, 2)dA
Since ¢,, and ¢, depend only on the shape of the cross section, it follows that
S,. and $,4 are properties of the cross section. For convenience, we let

1 G
‘23 = -—E(SZr + JEJ— SM) (11-84)
and (11-83) reduces to
A/jl = lel'] - P2X3 (11'85)

Now, — P,%; is the statically equivalent torsional moment at the centroid due

+ See Prob. 11-10.
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to the flexural shear stress distribution. Then, X; defines the location of the
resultant of the flexural shear stress distribution with respect to the centroid.
The twist deformation is determined from
1 -
kl = Erj(*Ml -+ P2X3) (11"86)
where M, is the applied torsional moment with respect to the centroid. If P,
is applied at the centroid, M, = 0, and
X3
ki = ==P
1 G, J 2 (a)
The cross section will twist unless X3 = 0. Suppose P, has an eccentricity es.
In this case (see Fig. 11-13), M; = —e,P,, and
P
k= o5 (% =) (b)

For flexurc alone to occur, e; must equal X3.

X3
P‘Z
!
(— &
M, Centroid

Fig. 11-13. Notation for eccentric load.

Whether twist occurs depends on the relative eccentricity, e; — X3. Now, to
find X3, one must determine S,, and S,,;. This involves solving two second-
order partial differential equations. Exact solutions can be obtained for simple
cross sections. In the section following, we present the exact solution for a
rectangular cross section. If the section is irregular, one must resort to such
numerical procedures as finite differences to solve the equations. In Sec. 11-7,
we describe an approximate procedure for determining the flexural shear stress
distribution in thin walled cross sections.

Suppose the cross section is symmetrical with respect to the X, axis. Then,
&, is an even function of x; and a,3 is an odd function of x3. The form of the
boundary conditions (11-79) requires ¢,, and ¢, to be even functions of x3
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for this case. Finally, it follows that+ 83, =0and S,; = 0. Generalizing this
result, we can state: .
_The resultant of the shear stress distribution due to flexure in the X ;
direction passes through the centroid when X ;18 an axis of symmetry
for the cross section.

X3

Shear center

Xa

Fig. 11-14. Coordinates of the shear center.

We cpnsider next th_e case where the member is subjected to P,, P3 and M, -
at the right ‘end (see Fig. 11-14). The governing equations for the P, loading
can be obtained by trapsforming the equations for the P, case according to

Xy — X3 X3 = =X

Uy — Uy Uz ~> — U,

e a0 2 ®
0x; - (TGC; 333 ” w5;2‘
012 = 013 013 = —01,

13 d 12

Two additl:onal flexural warping functions must be determined. The expres-
sions defining the flexural shear stress distributions due to P5 are

Py
G12,, = 'I—_ d)3r,2
2

>0-13,r = Ij (@3r,3 — %‘Cg)

2 (11-87)
-VlGl P3 -
““E"}; [¢3d.2 - szs]

vG, P
013,4 lEl‘[j Hx3 + x3) + $3a4,3]
5k

Gi12,4 =

i

T @25 evenin xa, ¢ ;s odd in x3, and Sz1. S2q involve only integrals of odd functions of x;.
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where ¢s,, ¢s, are harmonic functionst sausfying the following boundary
conditions:
03, Ia 2
= 5 %n3-\3
o2 (11-88)
03 x3 + X3\
= Up2X2X3 = %p3

A
on

2 )
Note that the distribution due to ¢34 leads to no shearing stress resultants.
Finally, the total normal stress is given by
Mz M3 P PZ
gy = +—=x3 — X3 = —(L — xy)|—x3 ++"x (11-89
1 LB T " ( 1)(12 st ) o )
Superimposing the shearing siresses and evaluating the torsional moment,

we obtain
Ml = lelJ - Pl:fJ_ + P3;\;v2 (11—90)

where X, defines the location of the resultant of the flexural shear stress distri-
bution due to P;. One can interpret X, %3 as the coordinates of a point,
called the shear center. The required twist follows from (11-90):

k1 e (M1 -+ Pﬂ\} —_ P;\z) (a)
Since (see Fig. 11-14)

M; + P,X3 — P;3%,

11-91
= the applied moment with respect to the shear center = M¢ ( )

we can write (a) as 1
ky = — My
1 G1J T
To determine the twist deformation (and the resulting torsional stresses), one
must work with the torsional moment with respect to the shear center, not the
centroid. For no twist, the applied force must pass through the shear center.
In general, the shear center lies on an axis of symmetry. If the cross section
is completely symmetrical, the shear center coincides with the centroid.
It is of interest to determine the complementary energy associated with
torsion-flexure. The only finite stress components are gy, 012, anid ;3. Then

V* reduces to
1
_0114‘““612““_““013 dA (EL)
1 Cl

The contribution from oy, follows directly by substituting (11-89) and using
the definition equations for I, f5.

(11-92)

+ The total flexural warping function for Pj is
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_ 1 [M} M;3
V*!,, = —|— 4+ —
o 2B\ I, I3

Now, the total shearing stress is the sum of three terms:

SEC. 11-5.

(11-93)

1. o, a pure torsional distribution due to Mr
2. of, the flexural distribution due to F,
3. op,, the flexural distribution due to F3

Each of the flexural distributions can be further subdivided into—

1. 0, r, the distribution corresponding to a rigid cross section (defined

by </>J,)

2. ay,r, the distribution associated with in-plane deformation of the cross
section (defined by ¢jq)

We combine the flexural distributions and express the total stress as

012 = O32,1 + O12,» + 0124 (@)
013 = Og3.¢ T O13,¢ + 0134

where the various terms are defined by (11-81) and (1 1-87). For example,
F
O12,¢ = '[—2“ ((,bZr, 2 %YZ) + (b"‘n . (b)
3

The complementary energy due to pure torsion follows from (11-38) and
(11-92):

M} _
”4 (012, + 013,0dA = 3G JkT = 5G] (11-94)
We express oy, , a8
F Fs_
Oi2,r = 'l:j Par2 + HI} D3, 2
N ? (11-95)
RS SRy
13, r = I 2r, 3 I 3,3

where
1.3
P3r — X3

(.f;Zr = 4)2»‘ - %\”25 ($3r =

Expanding (¢3,,, + 0%3,,) and integrating over the cross section, we obtaint

F} 2F,F;  Fj}
JJ (612, + 023 ,)dA = A"2 + _.A23 + 7

R _ 1 _ j#k

J k

1 1 1 — .
- = b . dA
s 1213 J’J' (P2, 2P3r 2 + (/)2; 3P, 3dAd = ]713 jj X3¢z

t See Prob. 11-11.

(11-96)
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The coupling term, 1/4,3, vanishes when the cross section has an axis of
symmetry.
We consider next the coupling between ¢, and ¢ .

H(Glz,z(fu,r + 043,013, )d4

M r
= _Jlj [(¢r,z Xs)( Par 2 JF ¢3r z)

+ (¢, 3 + x2) (F Par 3 + ¢3r 3)}

FF, _ -
= Ml§ iad) : “f(f’ ] [((f)r,z — Xadaaa + {3 + -Vz)“n.x]ds (11-97)

J 2¥
MTﬂ( B + %.)V%,dA—o

The remaining terms involve o 4, the shearing stress distribution due to in-
plane deformation of the cross section. We will not attempt to expand these
terms since we are interested primarily in the rigid cross section case.

Summarizing, the complementary energy for flexure-torsion with unre-
strained warping is given by

- 1 /M M3 M2 1 [F3 F,F; F3
P = (222 r o, L (fz2 o 027 13 -
2E1<12 + - T + 6. + 56 +2 i + i (11-98)

+ terms involving v/E

where My = M, + F,X; — F3X,. We introduce the assumption of negligible
in-plane deformation by setting v,/E = 0. Similarly, we introduce the assump-
tion of negligible warping due to flexure (¢,, ~ 0, ¢3, ~ 0) by setting 1/4, =
I/Az = I/Az_'; = O

In Sec. 11-7, we develop an approximate procedure, called the engineering
theory, for determining the flexural shear stress distribution, which is based
upon integrating the stress-equilibrium equation directly. This approach is
similar to the torsional stress analysis procedure described in the previous
section. Since the shear stress distribution is statically indeterminate when the
cross section is closed, the force redundants have to be determined by requiring
the warping function to be continuous. For pure torsion, continuity requires
(see (11-32)) )

s 05,0 dS = 2G ki As (@
where the integration is carried out in the X ;-X 5 sense around S, and Ay is the
area enclosed by S. To establish the continuity conditions for flexure, we
operate on (11-81) and (11=37). There are four requirements:

bir = §s (G015, dS =0 j=2,3
. 2}1G PZ
$24 §s (015,a)r, dS = EI'; Jf A (11-99)

2viGP
P30 =P (05,0, dS = mAESA LI} X, dA4
s 3 El,

As
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In the engineering theory of flexural shear stress distribution, the cross section
is considered to be rigid, i.e., the distribution due to in-plane deformation is
neglected. The consistent continuity condition on the flexural shearing stress
is

§s 015 dS = 0 (11-100)
One can take the +S direction as either clockwise or counterclockwise. By
definition, the positive sense for g5 coincides with the + S direction.

11-6. EXACT FLEXURAL SHEAR STRESS DISTRIBUTION FOR A
RECTANGULAR CROSS SECTION

We consider the problem of determining the exact shear stress distribution
due to F, for the rectangular cross section shown in Fig. 11-15. For con-
venience, we first list the governing equations:

" x,
‘( %012
o3
4
2
3
=
3
X3 ) ‘—’%
A=dt
4
2
X

l-— 12 ——>L~ 12 -4

Fig. 11-15. Notation for rectangular cross section.

1. Warping functions

r v F
b= (P2 — dxD) + — 2<¢2d + 53)
Gils

Vi =0 V2 (f)zd =

aQbilr 1 2
TS = 2%n2X2
on
0¢2a x5 + 3
e U + Op3X2X3
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2. Shearing stresses

F2 1'1GLF2
012 = 7~ (b2r,2 — 3X3) + ——
3

i, [h2a, 2 + 3(x3 + x3)]

F v G E
013 = f(¢2r,3) + _lex;_z_ (24,3 — X2X3)

Determination of ¢,

The boundary conditions for ¢,, are

é _1/dy? fx +d
w2 = 515 d-"vz“.ﬁé’
. (a)
$ar,3 =0 at?<3= i—f
We can take the solution as
o = §d’x, (b)
The corresponding stresses and warping function are
<blr = é/)2r - Tl)'x; = ¥1§L12x2 - Zlv'x%
F, (d* 5
= o-F e — X 11-101
G12,r 213(4 \z> { )
013, =0
One can readily show that
”o‘uyrd/! = Fz
Finally, we evaluate 1 /sz using (11-96):
1 61
—/—;—— =7z J‘J‘ Xy, dA = 5T (11-102)
2 3
Determination of ¢4
The boundary conditions for ¢,, are
1/d? d
P22 = —3 (— + x%) atx, = +3
2\ 4 2
(a)
¢ = +£x atx; = +—t—
2d,3 ) 2 A3 )

Now, the form of (a) suggests that we express ¢, as

G20 = %sz% - %X% — flx2, x3) (b

-
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where f is an harmonic function. The shearing stresses and boundary condi-
tions expressed in terms of f are

v1Gy Fy 9

012,d = E 73‘ (x3 = f.2) ©
orsa =102y
13,d B I .3
and
fa2=x} atxzzig—
) d
f:3 =0 at X3 = ’t-z-

It remains to solve V*f = 0 subject to (d).
Since the cross section is symmetrical, / must be an even function of x; and
an odd function of x,. We express [ as

217> 2n7
f=Box, + ), Bycos ( ”t“) sinh( mtmz) (e)

=1,2,..

This expansion satisfies V2/ = 0 and the boundary condition at x3 = +t/2.
The remaining boundary condition requires

2 { 2nmx t t
B,+ Y B, (——?E cosh T:—(> cos ——”—Trﬁé = x3 (——— < X3 < +~> 6]

n=1,2,...

2 2
Expanding x3 in a Fourier cosine scries and equating coefficients leads to
t?_

12
L/ (—1yp (8
B, =~|{—) ———
2 \nn nnd
cosh

By

The final expressions for the shearing stresses are

Osh 2]’17[3(2
C —
1’1G1 1"2 t 2 (_])n 2"7'CX3 I
SE D ol B M S
3 n) n=1,2,... cosh 4
i sinh 212
v Gy Fy [/ t)\? (=1 . 2nmxs

= — - e e 11-103

013,4 E I; <n> ,,:1?';‘“_ n? <h nnd s t ( . )
T

This system is statically equivalent to zero.
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To investigate the error involved in assuming the cross section is rigid, we
note that the maximum value of o4, , occurs at x, = 0:

L

0312, r}max = 81,

d? (a)

Specializing g, 4 for x; = 0,

vG, F, d* 2nmx;
g = e B C, cOs ——= b
(O12,d=0 = —% T d n=1;,4,. cos — (b)
where ‘
41y 1
G = A2 (1 " cosh A,,)
" (©)

nnd
An =
t
Now, C, decreases rapidly with n. Retaining only the first term in (b) leads to the
following error estimate,

. 4 1
bz.«t, ~ v, Gy A\ 2 1 - d g
Gi2,» E e cosh s (d

Results for a representative range of d/t and isotropic material are listed below.
They show that it is reasonable to neglect the corrective stress system for a
rectangular cross section. The error decreases as the section becomes thinner,

i.e., as d/r becomes large with respect to unity:

_‘_{/j '0'12,41/(712.;-
2 0.024
1 0.092
3 0.122

11-7. ENGINEERING THEORY OF FLEXURAL SHEAR STRESS
DISTRIBUTION IN THIN-WALLED CROSS SECTIONS

The “exact” solution of the flexure problem involves solving four second-
order partial differential equations. If one assumes the cross section is rigid
with respect to in-plane deformation, only two equations have to be solved.
Even in this case, solutions can be found for only simple cross sections. When
the cross section is irregular, one must resort to a numerical procedure such as
finite differences or, alternatively, introduce simplifying assumptions as to the
stress distribution. In what follows, we describe the latter approach for a thin-
walled cross section. The resulting theory is generally called the engineering
theory of shear stress. We apply the engineering theory to typical cross sections

J—
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and also illustrate the determination

‘ ¢ of the shear cente
efcions, 14 (1 55 z ter and the energy co-
“ ngtge 11-16 shqwsa segment defined by cutting planes at x; and x, + dxy.
Dince the cross section is thin-walled, it is reasonable to assume that the normal

Sress, oy, is constant through the thickness and to neglect g,,. Also, we work

X3

X,

Xy
Fig. 11-16. Differential thin-walled segment.

vyitl} the shear flow, g, rather than with o1s. Integrating the axial force-equi-

librium equation,

( 0
'*’*‘5}*1(0'11?):0 (a)

with tespect to S, we obtain the following expression for q,

& S
q=q4— ~—J oy tdS (11-104)
. 1

cX Sa
Equation (11-104) is the starting point for the engineering theory of shear
stress distribution. Once the variation of ¢,; over the cross section is known,
we can evaluate g. Now, we have shown that the normal stress varies linearly
over the cross section when the member is subjected to a constant shear (Fa, Fyq
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constant) and the end sections can warp freely. Noting that the member is
prismatic, the derivative of g, for this case is

0011 ~x3 dM2 deM3
axl —-7; dX1 “‘}; dxl &0
I N
L™ L7

and (11-104) expands to

F N F S
q=q4 — —if X,t dS — -ij x3t dS : (b)
13 Sa IZ Sa

The integrals represent the moment of the segmental arca with respect to X5, X3
and are generally denoted by Q,, Q3:

S .
Q, = J.SA X3t dS = Qy(S, S,)

s (11-105)
0s = [, x:tdS = 04(5,5.)
With this notation, (b) simplifies to
F F
G=qs— =203~ =20, (11-106)
13 I

Equation (11-106) defines the shear flow distribution for the case of negligible
restraint against warping, i.e., for a lincar variation in normal stress. Note
that g is positive when pointing in the + S direction.
We consider first the open section shown in Fig. 11-17. The end faces are
unstressed, i.e.,
ga=qp =0 (a)

Taking the origin for S at A4, (11-106) reduces to

5 F3
q = I, 03 I, 0

(11-107)
s ) s .
0, = jo X,tdS 0, = jo X5t dS
We determine Q,, Q5 and then combine according to (11-107).
The shearing stress distribution corresponding to F,,
F
¢=-70 @
3
satisfies
0y, dA = F
_H 12 — 2 (b)
{fo,3dA =0

identically. To show this, we expand g,

4 = qis = (qus2)i, + (qotsa)is (©
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X3

- fpz_i;
|

| Sf]ear center
P

- —
1

-
- I

a, R

Centroid

Fig. 11-17. Flexural shear flow—open segment.

and cvaluate the shear stress resultants:

F ,
ﬂomm = jqasz ds = ”’Tz’ jaSZQB ds
3
« ; (d)
ff 013 dA = J qoigs dS = ~—[—§ j og3Q5 dS

Equation (b) requires

S
LE %5203 = —1{3

Sp ()
|77 053055 =0

Now,

dx;
®si = U (f)
Integrating (e) by parts and noting that X,, X5 are principal centroidal axes,
we obtain

Sg _ Sp Se 2000
Jo 45203dS = [x,03]5 jo Xyt dS = —1Is )

S , S
L)B 253Q3dS = [x303]6% — ‘OB Xpx3t dS =0
The shear stress distribution predicted by (a) is statically equivalent to a
force F,i,. To determine the location of its line of action,{ we evaluate the
moment with respect to a convenient moment center. By applying the same
argument, one can show that the shear flow corresponding to F is statically

+ See Eq. (11-2).
i See Prob. 1112,
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equivalent to a force, F37;. The intersection of the lines of action of the two
resultants is the shear center for the cross section (see Fig. 11-17).

Example 11-3

Consider the thin rectangular section shown. We take +S in the + X, direction. Then,
+ ¢ points in the + X, direction and g/t = ¢y,. The various terms are

Y jwz tx, d ! (dz )
= Xy dx, = —~{-—— — x3}
’ -dr2 P 2\4
F, thy (d*
q= "“I";Qs = E(z‘ — X3

g F, (d& 2
I e T er—— ——— e x,’
=TTy s\ 4 -

This result coincides with the solution for o, , obtained in Scc. 11-6. Actually, the engi-
neering theory is exact for a rigid cross section, L.e., for v{/E = 0.

Fig. E11-3
X, 9

X,

J{
|
L

1 il
A

Example 11-4

We determine the distribution of ¢ corresponding to F, for the symmetrical section
of Fig. E11-4A. Only two segments, AB and BC, have to be considered since |Qs] is
symmetrical.

Segment AB
Q3 = hth
F, F,
= 220y = —-2(u,S
q I, Qs T, (htS)

According to our definition, +¢ points in the +S direction (from 4 to B). Since q is
negative for this segment, it actually acts in the negative S direction (from B to A).
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X, Fig. E11-4A

+q
\
L J

+l[ ) h

X3 DiC — d

Segment BC
We measure S from B to C. Then,
Qs = bty + 3t (0% — x5)

F
q ﬁ’fj‘ [hbsty + $tuh? — xH)]

il

Note that the actual sense of ¢ is from C to B. The distribution and sense of g are shown

in Fig. E11-4B.
It is of interest to evaluate 4,. Specializing (11--96) for a thin-walled section,

ds F3
Jj (0'125‘ Fs dA = j (qz)Fz — =2 (a)
t A4,
and substituting for ¢ yields
{ 1 , ds
—_— — = b
We let
A4, = area of the web = dt,,
Ay = total flange area = 2bt, (c)
Az = I(Aw

The resulting expression for k'is

(d)
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X Fig. E11-4B

)

L htyhy

This factor is quite close to unity. For example, taking as typical. for a wide-flange section,

t =2t
by = 3d
we find
Ay = 34,
k = 095

The shearing stress corresponding to F; varies parabolically in the flanges and is zero in
the web. Each flange carries half the shear and

I 61 31

Z:gzzgm (e)

Example 11-5

Cross-Sectional Properties

This section (Fig. E11-5A) is symmetrical with respect to X,. The shift in the centroid
from the center of the web due to the difference in flange areas is

baty — byty :
= @
bity, + baty + dt,.
We neglect the contribution of the web in I, since it involves 13
Iy~ (I + (1) = f2(t:ib} + 12b3) (b)
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Determination of Q,

Taking S as shown in the sketch, we have

S TLAS 5
o =5{(5) - =]
hz 2
Qzlz = fzf [(3) - X%] ©

0s]w =0 since X, is an axis of symmetry.

Fig. E11-5A
/Y:{

—
+q~:T TS ,lw +q /:l—

by d Xy by

Centroid

(1 +A)%——-l - -

d

Distribution of g Corresponding to F,

The shear flow corresponding to F, is obtained by applving
r
4= 70 @

and is shown in Fig. E11-5B. The shear stress vanishes in the web and varies parabolically
in each flange.

Integrating the shear flow over each flange, we obtain
Rj= Fy=24 (@)

Then. the distribution is statically equivalent to F3i; acting at a distance e from the left
flange, where
o= Rqd (2)2

® UL @

Since X, is an axis of symmetry, the shear center is located at the intersection of R and X 5,
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X5 Fig. E11-5B
=F
R d R=Fs Pyiaf by
a=7,20\2) ? t =T %[@2&) 2
1
¢ 1 -f.ﬂ,‘
: : Shear *
j ter
Centroid~__ ‘ A\/cer f .
t § t
* }——'?2—'; T
TRl th
The coordinates of the shear center with respect to the centroid are
X, =
d
Y =e—(1+4A); {g)
I 1+ A
1, 2

Torsional Shear Stress

The flexural shear stress distribution is statically equivalent to a torsional moment cequal
to F%, with respect to the centroid. We have defined M, as the required torsional m(?mez?t
with respect to the centroid. Then, the moment which must be balanced by torsion 1
M, — F3%, = My, the required torsional moment with respect to the shear center. Usmg
the approximate theory devejoped in Sec. 11-3, the maximum torsional shear stress i a
segment is

el ()

Tmalj = U
where ' ’
J = 313 + batd + di)) (i)

We cousider next the closed cross section shown in I ig. 11-18. We take the
origin for S at some arbitrary point and apply (11-106) to the segment Sp-S:

F, F;
q:ql—"'l‘;Q3 IZQZ

S u

0, = JZ x5t dS Q5 = js Xyt dS
P P

where ¢, is the shear flow at P. The shear flow distribution is statically indeter-
minate since g, in unknown. We have previously shown that ¢ = g, = con-

(11-108)
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stant is statically equivalent to only a torsional moment equal to 2¢, A ;. The
second and third terms are statically equivalent to F,7, and F4is.

The constant g, is determined by applying the continuity requirement to the
centerline curve. Since the engineering theory corresponds to assuming the
cross section is rigid with respect to in-plane deformation, we use (11-100).

Xy

Fig. 11-18. Notation for closed cell.

The flexural shear stress distribution must satisfy

§alst=§; qgi-é:()
s s 1

for an arbitrary closed curve.t Substituting for g,

ds F, § as F, ds
[ JR—— + PR P a
‘115&01 ; I, Sc)Qs : I, sc,QZ P (a)

and considering separately the distributions corresponding to F, and F;, we
obtain

(11-109)

q = (g, + g,
F F
2 (B, — Q3) qrs = =2 (B; — Q,)
I I,

s ds (11-110)
§Sle3 l §501Q2 t
B, === 4s By =% —rr

as as
S ¢t t

Each distribution satisfies (11-109) identically. Also, the distribution (g)r, is
statically equivalent to a force F;i;, located X, units from the centroid. Note
that ¢ = B; leads only to a torsional moment equal to 2B;4,;.

qr, =

1 One can interpret (11-109) as requiring the flexural shear stress distribution to lead to no twist
deformation. See Prob. 1114 for the more general expression, which allows for a variable shear
niodulus.
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The general expression for 1/4; follows from (11-96):
S F?
Np,— = =+ j=2,3 11-111)
Z L (g )F,- : A, J (

Substituting for (g)r,

1
4 I
and noting that

as .
<§ (B} - 2B,0 + Q) (U # ki), k=273 (b)
Set

J s t s, t
cl cl

11 , 48 é; S Lk ik=23) (11-112
L 22— B,d O (G#kijk=273 ( )
AJ I£§SC;QII ! Sei lt

we obtain

which applies for an arbitrary single cell.

Example 11-6

We illustrate the determination of (q)r, for the square section of Fig. E11-6A. It is
convenient to take P at the midpoint since the centerline is syrmunetrical.

X3 Fig. E11-6A

[ns IR nat] — le— ¢
t
F'; l
IR S § B oo e———— |
| : Jl
Cross-Sectional Properties
Ay = a?
a’ a 3,
= 3t{— — =-a’
I, =3t <12> + 2(at) 7= a
A=) a
Sat 10

§fi§=3‘59
t t
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Determination of Q,

We start at P and work counterclockwise around the centerline. The resulting distribu-~

tion and actual sense of q due to @, arc shown in Fig. E11-6B. Note that +Q, corresponds
to a negative i.e., clockwise, g.

e —~__F T

!
T +S.g
f
f

Evaluation of B,

By definition,

Using the above results, and noting that the area of a parabola is equal to (2/3) (base) x

{height), we obtain
das a®
ﬁgz _t + x.
B

2T

Distribution of Flexural Shear Flow for I’y
The shear flow is given by
F, Fy/l 40,
=28y - Q) = - 222
4=7 B = Q= (21 3t

(+ sense clockwise). The two distributions are plotted in Fig. E11-6C.
To locate the line of action of the resultant, we sum moments about the midpoint (O in

the sketch:
: 1 a 4r'y (a 19
M), = —F, |~ 23 D)= —gaF
Mo = gFs (z) AT <z> 126
The resultant acts e units to the right of O, where

19

e:‘i‘z‘gﬂ

Fig. E11-6B
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Fig. E11-6C
—
R maend B s d B mannend B saunand
B
l F321 ?
l1f3/21 Fg/.'ZIT T
l F3/21 T
r———

}
{
f
!

A

al:‘l
o
2|

Finally, the coordinates of the shear center with respect to the centroid (which is A units to
the right of O) are

&
i
xQ

1
>
I
_|r_
a

i

o
I
=}

Torsional Shear Flow

The shear flow for pure torsion is due to M, the torsional moment with respect to the
shear center. For this section,

My = M, — %F5 + X3F, = M —

We apply the theory developed in Sec. 11-4. One just has to replace M, with My in
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M, c
GIS’nmx = ‘7{ (l +- _’-Tl)

C, = %at
J =3’ + Hat®

Equation (11-61):

Determination of 1/4,

Applying (11-112), we find

U 1(f ,as s\ 1276
oL ® _ B N e
A, 2 (§Q2 t 3§Q’2 t) at

Note that 3at is the total web area.

We consider next the analysis of a two-cell section and include open segments
for generality. There is one redundant shear flow for each cell. We select a
convenient point in each cell and take the shear flow at the point as the redun-
dant for the cell. This is illustrated in Fig. 11~19: g; represents the shear flow
redundant for cell j and the +S sensc coincides with the X,-X; sense to be
consistent with the pure-torsion analysis. The + S sense for the open segments
is inward from the free edge. For convenience, we drop the CL (centerline)
subscript on S and A.

X,

Fig. 11-19. Notation for multi-cell section.
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The total shear flow is the sum of qo, the open cross-section distribution
(g1 = g2 = 0), and g, the distribution due to the redundants:

q=qo+ qr (11-113)

We determine g, by applying (11-107) to the various segments. The redun-
dant shear-flow distribution is the same as for pure torsion (see Fig. 11-11).
Finally, we obtain a system of equations relating q,, g, to F,, F3 by applying
the continuity requirement to each centerline, T

s
§ q—é:() j=12
s; 1

where ¢ is positive if it points in the +S direction. Using the ay notation
defined by (11-68), the equations take the following form:

(11-114)

a11gr + d12q2 = Dy
a12q; + a4 = D,

ds (11-115)
D; = —§ qo_tl = D, (F. F3)
i

The shear flows (¢, 1. ¢2, ) for pure torsion are rclated by (we multiply (11-71)

by My/J and note (11-62))

M

Ay qgi s + a1aqa, = 24, ,.,].I
' (11-116)

My
Q1241 + A2242, = 24, “f’l

Thus, the complete shear stress analysis involves solving agq = b for three differ-
ent right-hand sides. The equations developed above can be readily generalized.

Example 11-7

We determine the flexural shear stress distribution corresponding to F; for the section
shown in Fig. E11-7A. We locate P, and P, at the midpoints to take advantage of
symmetry. :

Cross-Sectional Properties

A = 2a°
A, = a?
— g
3 2
I,=3 (—%’) + 2[(3(113) %f] - -47-a3:
6a 4a a
Ay = 7 Ayy = T Ay = i

T See Prob. 11--14 for the more general expression, which allows for a variable shear modulus.
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X3 Fig. E11-7A
b b
t a2
+¢{\1 +q2 i
lr - P"‘“f”‘“““*‘r**"\“-i*———ﬂ
t _ | P,
PRSI DU x2/~j_.l.,.__[ ’ ! l!
a ! Al,cl D | i !
| Centroid —¥ ¥ ] A2
I t Shear | Az |
i l center ] ’ |
T g s [E R —— |
+S,q T +S.q
2 |
- : ]

Distribution of g

This system (Fig. E11 ~7B) is statically equivalent to a moment

2a*(2q, + 4201
Distribution of g, Due to F,
We apply
Fy
7= -0,

to the various segments starting at points Py, P,. The resulting distribution is shown in

Fig. E11-7C.

Determination of g, g,

ds 2

D, = —~§ go— = — iI::’
5y t 71

1S 2F

D, = — ¢ — 3
=g I3

’ fﬁq,q" t 77

The equations for ¢, and q, are

1F
6G, — q, = —=-3
q; — 4, 772
2F
—qy +4gy =2
Solving (a), we find 7a
2 Fy
R TT i
_ o, LF
T

The total distribution is obtained by adding g, and ¢, algebraically.

(a)

(b)
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Fig. E11-7B
q2
q1 < e PO Pra— P
l 2q1a 3’ qra T
lqla @~ ‘ 1([{2 T qzaT
v |
l 2q.a \ l 2
L
0 P — — L — [ 0
- Fig. E11-7C
Ta — Py - — Ja—— Py - a
! 35 -
7 a

——
T
=iz

14 a

Location of the Shear Center

Taking moments about the midpoint of the left web, and letting e be the distance to the
line of action of the resultant, we obtain

10 4 -
M(+7) = 2d*2q, + q;) + (20) (27 F3> + (3a) (fﬁ F3> = eF,
2 32
=|-=+=}a=16la
¢ (23 * 21) ¢
The shear center is located on the X, axis and
X, = ¢ — (2a — A) = +0.055a
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PROBLEMS

11-1. The pure-torsion formulation presented in Sec. 11-2 considers the
cross section to rotate about the centroid, i.e., it takes

Uy = —@W X3
Uz = ‘|“Cl)1,\’2

wy = kyx,
uy = ki,

Suppose we consider the cross-section to rotate about an arbitrary point
(x3, x¥). The general form of (a) is

(@

Uy = —wylx; = x3) @, =k + ¢y

Uy = +w{x; — x3§)

(b)

uy = kit
(a) Starting with Equation (b), derive the expressions for o,,, 0,3 and the

governing equations for ¢f.
(b) What form do the equations take if we write

¢F = ¢ + ¢ — X,xF + x3x3

Do the torsional shearing stress distribution and torsional constant J
depend on the center of twist?
11-2. Show that J can be expressed as

J = [[[x3 + x3 — ($,2)" — (¢r.5)"]dA
= 11’ - ”[(‘7);,2)2 + (d)x.})l]dA

H(/)r qust d4 =0

Compare this result with the solution for a circular cross section and comment
on the relative efficiency of circular vs. noncircular cross section for torsion.

11-3. Derive the governing differential equation and boundary condition
for ¢, for the case where the material is orthotropic and the material symmetry
axes coincide with the X, X,, X ; directions.

Hint:
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11-4. The variation in the warping function ¢, along an arbitrary curve S
is obtained by integrating (11-29),

2, .
Yis = Ky (EST + pcl) ()

where p,, is the perpendicular distance from the center of twist {lo the ;Lg?fteig;
One selgcts a positive sense for S. The sign pf p is positive when V?/e otation
about the center of twist results in translation in the + S direction. p

Y15 @s

1 M, _ : b)
Yis = 50w = =7y Ous (
and (a) reduces to y ;
(&R . ¢
as = TP s

Determine the variation of ¢, along the centerline for the two thin-walled open
sections shown.

Prob. 11-4
X3 “13
i
T L l }

T Center ] j

% bw of twist s
o el |

74 2 [ d

[ B et ¢

% Center of twist i 1

C ]
|
o2 N R
(a)

11-5. Verify that the distribution, ¢ = const, satisfies

Fy = {[o,, dA = §qug, dS = 0
Fy = {[o,3dA = §qug3 dS = 0
M, = §( x §-i)dS = 294,

s tion sketched. ) .
forltlh—e6cloiggftfrr (;:)S ;’Cr(;kl) 11-4. To apply Equation (c) to the centerline of a
closed cell, we note that (see (11-50))

J Jq_g
515=E01s = =7

= (@
Mt

cl
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X Prob. 11-5
s =as, b+ as3 B3
q=q7s
Then,
FRETR ®)

Integrating (b) leads to the distribution of P,

Apply (b) to the section shown.
Take ¢, = 0 at point P. Discuss the case wher

ca = b,

Prob. 11-6

11-7. Determine the torsional shear stress distribu
constant J for the section shown. Specialize for t « .

11-8. Determine the equations for C; (j = 1,2, 3) and J for the section
shown. Generalize for a section consisting of “n” cells.

11-9. Dctermine the distribution of torsional shear stress, the torsional
constant J, and the distribution of the warping function for the section shown.
Take ¢, = 0 on the Symmctry axis and use the results presented in Prob. 11-6.

11-10.  Verify Equation (11-82). Utilize (11-15).

tion and torsional

11-11. The flexural warping function § i satisfy
Vi, = —x, in4
O:b"’ =0 ons$
on
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Prob. 11-7

I

P
st

SN S @ S S

l 1 +5 J,
! f
t t
i a I 2a {
Prob. 11-8
t t t
| { 1
t ! f
[ [ e teen [ s antd
a ® ® ®
J‘ \..Xsl \\../52 \-JS3
} | |
i ! E
!-——-————a %« a { a }
‘ ‘ ; Prob. 11-9
B R
+S +5 T
f erS t aL

e 20— —
Utilizing the following integration formula,

/2

on

Jf (f1.2/f2,2 + f1,3/2, 3dx; dx; = Sﬁfl ds — J‘ S szz dx, dx;

where f;, f, are arbitrary functions, verify Equatioun (11-96).
11-12. Refer to Fig. 11-17. Starting with (11-107), derive the expressions
for the coordinates of the shear center in terms of the cross-sectional parameters.
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11-13. Determine the flexural shear flow distributions due to F,, F; and

locate the shear center for the five thin-walled sections shown.

Prob. 11-13

P T ::
1 ['f
dj2 — e tw
8/2 I
6/2 ‘T’
X3 dj?
‘ ’ 1
. 1
X
(b)
(a)
21 2 2t
I ] T ¢ t
t t a 151 15 21
: |
R ¢ ¢

2
.

Q

2
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11-14. We established the expression for the twist deformation (Equation
(11-31) by requiring the torsional warping function to be continuous. One
can also obtain this result by applying the principle of virtual forces to the
segment shown as part of the accompanying figure.

Prob. 11-14
A Arbitrary
n closed
| curve
) S
- i — P — e e P
AM, w1 7 AMy ot @ da
/
/
x dx |
D o !

0y sdndS

(b)
t
l 2G(2F)
X3 t—] je— —_— et
! G(E) GE)
X 2G(2E) 1
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The general principle states that ‘
([fe" Ao dA)dx, = ([f AbTu dA)dx, + [[f Ap” Au dAl,, .+ax (a)

for a statically permissible force system. Now, we select a force system acting
on the end faces which is statically equivalent to only a torsional moment M ;.
If we consider the cross section to be rigid, the right-hand side of (a) reduces
to AM »,  dx;, and we can write

1
AM,

Wy =k = JST Ae dA (b)
Next, we select an arbitrary closed curve, S (part b of figure), and consider the
region defined by S and the differential thickness dn. We specialize the virtual-
stress system such that Ae = 0 outside this domain and only Aoy is finite
inside the domain. Finally, using (11-51), we can write

AM
L (c)
4/15
and Equation (b) reduces to
1 )
kl = —27/1"; és‘ Yis (]S (d)

The derivations presented in the text arc based on a constant shear modulus
G throughout the section, so we replace (d) with

1
Gk, = T §013 ds (e)
=Ag

If G 1s a variable, say G = fG* (where /" = f(x,, x3)), we have to work with

, L[ ,
G’l‘kl = “2;1':; ?(7) Gs dS (f)

Also, we definc the torsional constant J according to
G*k,J = M, (2)

Consider a thin-walled section comprising discrete elements having different
material properties. Develop the expressions for the torsional and flexural
shear flow distributions accounting for variable G and E. Determine the
normal stress distribution from the stress-strain relation. Assume a linear varia-
tion in extensional strain and evaluate the coefficients of the strain expansion
from the definition equations for F,, M,, and M;. Apply your formulation
to the section shown in part ¢ of the figure.



