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Characteristic-Value
Problems and
Quadratic Forms

2—1. INTRODUCTION
Consider the second-order homogeneous system,

(a;y — Axy + appXo = 0 (2-1)
ayxy + (@22 — Axz =0
where 1 is a scalar. Using matrix notation, we can write (2—1) as
ax = AX 2-2)
or .
(a— A)x =0 (2-3)
The values of A for which nontrivial solutions qf (2-1) exist are.cz}\led the
characteristic values of a. Also, the problem of finding the characteristic vahées
and corresponding nontrivial solutions of (2~1) is referred to as a sepond—or er
characteristic-value problem.* ‘ _ .
The characteristic-value problem occurs paturally in the frge-vxpratxon
analysis of a linear system. We illustrate for the‘system shown 1n F}g. 2,_1'
The equations of motion for the case of no applied forces (the free-vibration

case) are )

d*y,
222 4k, — =0
my =+ Ay2 = ¥o) @
d2
ny _a;};i + k1y1 — ky(y, — yl) =0

* Also called “eigenvalue” problem in some texts. The term “eigenvalue” is & hybrid of the
German term Eigemverte and English “value.”
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Assuming a solution of the form A
yi = A€’ vz = A& (b

and substituting in (a) lead to the following set of algebraic equations relating
the frequency, w, and the amplitudes, 4,, A,

(kl + kz)Al — kZAZ = )7’11(1)2141 (C)
”‘kZAl + ’C2A2 = n’l?_Cl)zAz

We can transform (c) to a form similar to that of (2—1) by defining new amplitude
measures,*

A= w? ,
Ay = Army | (d)
.712 = Az\/nlz
and the final equations are
k ky - I - -
! —F {2 /41 -— fz.:::/42 = 2/41
mq NS ©
k - ky - -
- —’"“—"‘_—Z-ww 11 + "2' A2 = }'AZ
Jmym, my

The characteristic values and corresponding nontrivial solutions of (e) are
related to the natural {requencies and normal mode amplitudes by (d). Note
that the coefficient matrix in (e) is symmetrical. This fact is quite significant,
as we shall see in the following scctions.

A
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Fig. 2—1. A system with two degrees of freedom.

Although the application to dynamics is quite important, our primary reason
for considering the characteristic-value problem is that results obtained for the
characteristic value problem provide the basis for the treatment of quadratic

* See Prob. 2-1.
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forms which are encountered in the determination of the relative extrema of a
function (Chapter 3), the construction of variational principles (Chapter 7), and
stability criteria (Chapters 7, 18). This discussion is restricted to the case where
a is real. Reference 9 contains a definitive treatment of the underlying theory

and computational procedures.

2-2. SECOND-ORDER CHARACTERISTIC-VALUE PROBLEM

We know from Cramer’s rule that nontrivial solutions of

(ary — Axy + a12x3 =0 (2-4)
a21%1 + (@22 — A%y = 0
are possible only if the determinant of the coefficient matrix vanishes, that is,
when )
a1 ~— A Gy - - (2-5)

(3] Ay — A

Expanding (2-5) results in the following equation (usually called the charac-
teristic equation) for 1:
“AY = (@11 + a22)d + (a1i822 — A21012) = 0 (2-6)
We let
f1 = as; + ax; 2-7)
P2 = ay1025 — A28y = }a{

and the characteristic equation reduces to

2= Bid+ B =0 (2-9)

The roots of (2-8) are the characteristic values of a. Denoting the roots by
As, A, the solution is o

disa = By £ /BT — 452)2 (2-9)

When a is symmetrical, ay; = a4, and
Bt — 4B = (a1 — a22)* + 4lar)’

Since this quantity is never negative, it follows that the characteristic values for a
symmetrical second-order matrix are always real.

Example 2-1
¢9)

23]

Bi=2+5=7
B =@ - 22 =6

The characteristic equation for this matrix is
AT+ 6=0 A @
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Solving (a),

@

B = By = +1

By definition, nontrivial solutions of (2-4) exist only when 1 = Ay or 4,
In what follows, we suppose the characteristic values are real. We consider
first the case where | = Ay Equation (2-4) becomes

(all - }vl)xl + AyrXy = 4]

21X + {22, — Adx, =0 @
The second equation is related to the first by
second eq. = [ —2L _ )y
q (a“ = M) times the first eq. (b)
This follows from the fact that the coefficient matrix is singular.
(ary = A)az; ~ A1) = @ga30 = 0 (©

S}ﬂCCv only one equation is independent and there are two unknowns, the solu-
tion is not unique. WC. define x{", x{9 as the solution for | = A1. Assuming*
that a,, # 0, the solution of the first equation is A

W= @

X = gy — A4

—_— = ¢y

iz
where ¢, is an arbitrary constant. Continuing, we let
1) 1 1
XV = {9, x4} ©

:;1;1 ttlakc: ¢y Isgch thlat (x)Tx = L. This operation is called normalization
ie resulting column matrix, denoted by Q,, is refer :

d t 5 , 18 red to as -
teristic vector for A,. s © a8 the charac

Ql = (1 {4-1, *9‘—1—}%’_ ;Ll _
a1, (2-10)
ORNESD,
.\ a2
By definition, r
Q1Q1 =1

- (2~11)

N .
Ifa;; = 0, we work with the second equation.
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Since Q; is a solution of (2—4) for A = A, we see that

aQ; = 2:Qy (2“12)
Following the same procedure for 4 = 4,, we obtain
-2
Q=c {+1, —fil—ui} (2-13)
Aag2
where
1\?2 — 2 ]
- o]
Ca gz
Also, .
TO. —
QZQZ - 1 (2~14)
aQ; = /,Q,

- It remains to discuss the case where 4, = 1,. If a is symmetrical, the char-
acteristic values will be equal only when ay; ='a,; and a;, = d;; = 0. Equa-
tion (2—4) takes the form
(all - A)xl + (O)XZ =0 (a)
O)x1 + (a1, — Axz =0

These equations are linearly independent, and the two independent solutions
are

xP = {c;, 0}
’ b
x? = {0, Cz} ( )
The corresponding characteristic vectors are
Q: = {+1,0} (2-15)
QZ = {03 +1}

If a is not symmetrical, there is only one independent nontrivial solution when
the characteristic values are equal.

It is of interest to examine the product, Q{Q,. From (2-10) and (2-13),
we have

(ayg — A)ag;, — ;»2)> (2)

2
aiz

QiQ; = —cic; (1 +
Now, when a is symmetrical, the.right-hand term vanishes since

ais
ayy — Ay = —(az; — 4y) = ——— b)
11 2 22 1) ay — A (
and we see that Q7Q, = 0. This result is also valid when the roots are equal.
In general, Q7Q, # 0 when a is unsymmetrical. Two nth order column vectors
U, V having the property that

U'v=vTU =0 (2-16)

are said to be orthogonal. Using this terminology, Q; and Q, are orthogonal
for the symmetrical case.
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Example 22
1)

-3 7]

)\1=+ /12=+].

(@

The equations for A = 4; = 46 are
—4x; + 2x, = 0
2x; —x, =0

We Sce that thC SCCOIld una[l()ll 1s —35 times the ﬁlSt equat on. SOIV ng t]le ﬁl { equatloﬂ,
7 S I mg
we Obtaln i

1
x{ =g x§ = 2x{0 = 2¢,

Then,
xW = {1,2}
and the normalized solution is
1
| Q= 7 {1,2}
Repeating for A = 4, = + 1, we find
x? = cpf1, —4}.

and

2 L1
Q. =74 VA

One can casily verify that
an = /?.ij j == 1, 2

Q{Qz = Q§Q1 =0

1 8
a=
Iy

The characteristic values and corresponding normalized solutions for this matrix are

}»1=+5 Ay = —1
I

and

@

Q, = “‘g {2, +1}
1
Q, = Wi {4, -1}
We see that QTQ, # 0. Actually,
7
QLTQZ T TS
85
€] v
[1 -2
a=
-
'/11 = 4 )ug = —i

We have included this example to illustrate the case where the characteristic values are
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complex. The equations corresponding to 4 = 2y are
(1 - i)X1 — 2%y = 0
x1~(1+1)x2=0

d equation is (1 — i) times the first equation. The general solution is

) =i

o=l
L+

x(2) = ¢y {1’__27_}

When the roots are complex, 4 is the complex conjugate of 1;. Now, we take ¢; = Cy.
Then, x® is the complex conjugate of x!V. We determine ¢; such that

Note that the secon

Repeating for 2 = 45, We find

(x(”)Tx(Z) =1
Finally, the characteristic values and characteristic vectors are

Ay, =
— 15
Qi =28 {1,—5—}

In general, the characteristic values are complex conjugate
of a are real. Also, the corresponding characteristic veclors arc complex conjugates.
e

quantities when the elements

2-3. SIMILARITY AND ORTHOGONAL TRANSFORMATIONS

The characteristic vectors for the second-order system satisfy the following

relations:
aQ, = 41Qyq (a)
aQ, = 2,Q2
We can write (a) as
NENES ] o
Now, we let
' = [Q Q.]

A= [0 )tj 2-17)

Column j of q contains the normalized solution for 4;. We call q the normalized
modal matrix* for a. With this notation, (b) takes the form

aq = qh (2-18)

* This terminology has developed from dynamics, where the characteristic vectors define the

normal modes of vibration for a discrete system.
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dege;haeve sh_own that the characteristic vectors are always linearly indepen
n a is symmetrical. They are also independ h i i
metrical, provided that A, # 1,. T} ot for the case where a 1
. I 2. Then, |g| # 0 except for the case wh i
unsymimetrical and the characteristic values are equal. If |g| # 0 it
and we can express (2—-18) as 4 eEE

L
4 aq =1 (2-19)

Th . . _ . .
fm‘:l thgtnx IE:)pera‘tlon, p~()p where p is arbitrary, is called a similarity trans-
ion. Equation (2-19) states that the similarity transformation, ¢~ *( )q

leduceS atoa dlagOIla
l matrix WhOSe elements are the CharaCtCl‘ISth Va]ues

If a is symmetrical, the n i feristi :
ot , ormalized characteristic vectors are orthogonal,
Q{Q; = QIQ, =0

Also, by definition,
QIQ; = QIQ,

Using these properties, we see that

n-[g]re ea-[3 ]

1 _ T
1 =49 (2-20)

It

and it follows that

(1: tzquarelmatri)'c, say p, having the property that p7 = p‘“1 is called an
tranz{gona t;natrlxN and the transformation, p'()p, is called an orthogonal
sformation. Note that an orthogonal tran mation i
_ sformation is als imilari
transformation. Then, the mod i s,
. al matrix for ¢ ctri iX I
ganslormation. Writé or a symmetrical matrix is orthog-

L |
q'aq = X 2-21)

Example 2-3
(1)

A=+4+6  Q =7§{l,2}
= +1 Q2=~\/1—3{2,—1}

q=[Q Q.= i[l _2]
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We verify that g7 = q ' and q'ag = }:
oot 2 2y 1 0] [
Ty — - 1 _
qq_5{2 ~1ll2 1] 500 s
P2 21 2] 16 2
W=7, sll2 -1 Bl -1
_ 1o 2)fe O}qu
V52 —1jlo t
. it 216 2 [e 0]4
Taqz_ - -
€=z, g1z -1] Lo 1
) ”
18
=11 3
1
Ay =45 Q =ﬁ{2, +13}
1
Ay = 1 szpﬁ{4,~l}

‘- [2/J’5'

A 5 0
o -1
Since a is not symmetrical, " # q~*. Actually,

S5 USS

"6

= (_ Jf%) [~ 117 _4/\57‘] ) [ 36

One can easily verify that

&)

1 1
q=2B31—i L+
2 2

In this case, q involves complex elements. Since the ujharacteristic A
conjugates, they are linearly independent and q ! exists. We find ¢

nition equation for the inverse (Equation (1-50)):
1 —1
1
1= ZAdjq = /32 _
q l Adjq 210+
2

—i

Wﬁ}
U5 =117

CHAP. 2

2J§/3]
J1j6 =113

ectors are complex

-1 ysing the defi-
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+i 0
“laq = =
124 [0 ——ij!

2—-4. THE nth-ORDER SYMMETRICAL CHARACTERISTIC-VALUE
PROBLEM :

One can easily verify that

The nth order symmetrical characteristic-value problem involves deter-
mining the characteristic values and corresponding nontrivial solutions for

a1 Xy -+ aq12X2 + -+ A pXy = lxl
AiaXy + A22Xy + ° 0 4 QX = AXy ' (2-22)
AipXy + AanXz + 20+ QGuXy = AX,
We can write (2-22) as
’ ax = Ax 2-23)
(a— Al)x =0

In what follows, we suppose a is real.
For (2-23) to have a nontrivial solution, the coefficient matrix must be
singular.

l]a — L] =0 (2-24)
The expansion of the determinant is .
(= 1) = BuA™™t 4 Bl = (=1)B,) = 0
where
Bi=aiy + a3+ + ay (2-25)

Bn = |al
and f; is the sum of all the jth order minors that can be formed on the diag-
onal* Letting Ay, 45, . .., 4, denote the roots, and expressing the characteristic
equation in factored form, we see that

Blz)bl+;f-2+"'+2.,,
gz = 11/12 + 11/13 + o+ /1,,_1/“..,, (2—‘26)

B = Agdy - A

We summarize below the theoretical results for the real symmetrical case.
The proofs are too detailed to be included here (see References 1 and 9):

1. The characteristic values A, 44, . .., 4,, arc all real.
2. The normalized characteristic vectors Qy, Qa, . .., Q,, are orthogonal :

QIQ;=46; i,j=12...,n

* Minors having a diagonal pivot (e.g., delete the kth row and column). They are generally called
principal minors. .
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3. ais diagonalized by the orthogonal transformation involving the nor-
" malized modal matrix.

qTag = A
where X
q = LQle T Qn]
A = [4dy]

-
Example 2-4

(vl) 5 =20
a = -2 3 -1
0 -1 1

Since a is symmetrical, its characteristic values are all real. We first determine By, B2, B3,
using (2-25): i

ﬁ1:5+3+1=+9~
Bp= 411 +5+2=+18
By =52 — (=D(-2) = +6

The characteristic equation is
‘ fOy= AP~ 92 +184—6=0

and the approximate roots arc
® Ay 4042

Ay = +230
Ay = +628
To determine the characteristic solutions, we expand ax = X,
5 — Ax, = 2%,
(=2)x; —x3 = —(3 — A%,
(1 - A)X;; = X,

i solution is
Solving the first and third equations for x; and x, in terms of x5, the general solut

2

x4
ki j=1,23
x4

=

(V) —
xY =
! 5

<P =

Finally, the modal matrix (to 2-place accuracy) is
$022 +051 —0.34
+085 ~052 -010

@

.OHN
w o D
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The expansion of |a — AL} = 0s

B-AM1 - -4=0
and the roots are

=3 A=3 A3=-1

Writing out ax = Ax, we have

(1 — Ax, +2x, =0
2%, +(1 — A)x, =0 (a)
3—Ax3=0

When 4 = 3, (a) reduces to
—2x%, 42x, =0
2x, —2x, =0 " (b)
O)x3 =0 '
We see from (b) that (a — ;) is of rank 1 when A = 3. The general solution of (b) is
Xy = ¢ Xy = € Xy = Oy

By specializing the constants, we can obtain two linearly independent solutions for the
repeated root.  Finally, the characteristic vectors for A, = 1, = 3 are

Q; = {O, 0, 1}
When 4 = A; = —1, (a) reduces to
2xy + 2%, =0
2x, + 2x, =0
4x; =0

The general solution and characteristic vector for A5 are
P = ~xY  and X =0
1 1
=4 — 0
& {JZ 73 }
This example illustrates the case of a symmetrical matrix having two equal characteristic

values. The characteristic vectors corresponding to the repcated roots are linearly inde-
pendent. This follows from the fact that a — I3 is of rank I for the repeated roots.

2-5. QUADRATIC FORMS
The homogeneous second-degree function
F = a;x} + 2a;5%;%; + a22%3

is called a quadratic form in x,, x,. Using matrix notation, we can express

F as
ayy Qg2 | §Xq
F = [x1x,] = xTax
Ayz A2z | (X2
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In general; the function
F = ‘Z i apXxy = x7ax (2-27)
k=1 j=1
where aj, = aj, for j # k, is said to be a quadratic form in x4, X5, ..., X,

If F = x"ax is nonnegative (= 0) for all x and zero only when x = 0, we call
F a positive definite quadratic form. Also, we say that a is a positive definite
matrix. If F = 0 for all x but is zero for some x # 0, we say that F is positive
semidefinite. We define negative definite and negative semidefinite quadratic
forms in a similar manner. A quadratic form is negative definite if F < 0 for
all x and F = 0 only when x = 0. The question as to whether a quadratic form
is positive definite is quite important. For example, we will show that an
equilibrium position for a discrete system is stable when a certain quadratic
form is positive definite.

Consider the quadratic form . i

F=b1x%+b2x%+"'+bnxl%

by 0 - 07 (x
= [x1x2 T xn 0 :bz o O 2 (2~28)
O O e I;;l Xn

When F involves only squares of the variables, it is said to be in canonical form.
According to the definition introduced above, F is positive definite when

b1>0 b2>0,"'b,,>0
It is positive semidefinite when
b] 0 bz;ObHBO

and at least one of the elements is zero.

Now, to establish whether x7ax is positive definite, we first reduce a to a
diagonal matrix by applying the transformation, q*( )q, where q is the orthog-
onal normalized modal matrix for a. We write

xTax = (x"q)(q " 'aq)(g” 'x) .
. . (@)
= (x q)[liéij](q X)
Then, letting
y=q'x x-=gy (2-29)

(a) reduces to a canonical form in y:
F = XTaX = yT[/l{Lau}y (2_30)

It follows that F is positive definite with respect to y when all the characteristic
values of a are positive. But y is uniquely related to x and y = 0 only when
x = 0. Therefore, F is also positive definite with respect to x. The problem of
establishing whether x7ax is positive definite consists in determining whether
all the characteristic values of a are positive.
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We consider first the second-order symmetric matrix
4 -
a4 = [ 11 Q12
iz dza
Using (2~26), the characteristic values are related by

A+ Ay = Py=ay + azz

Ady = B2 = Ay1Q23 — G%z = }3! @)
We see from (a) that the conditions

Bi>0  p,>0 (b)

are equivalent to :
S ‘ >0 1,0 ©

uppose we specify that
a;; >0

‘3l = dy1lz; — aj; > 0 (d)

§ince aj, > O', it follows from the second requirement in (d) that a,, > 0.
Therefore, (d) is equivalent to (b). We Jet

Ay = [au| = a4

Ay1Qyo

Az = = ,al (2“31)

Q12012

Then, a is positive definite when

fy>0 B, >0

or (2-32)
Ay >0 A, >0

The quantities 8; and A ; are called the invariants and discriminants of a.

The .above’ gritel'ia also apply for the nth-order case. That is, one can show
that a is positive definite when all its invariants are greater than zero.

ﬂl>0 ﬁl>0 5n>0 (2—-33)

where f3; is the sum of all the jth-order principal minors. Equivalent conditions
can be expressed in terms of the discriminants. Let A; represent the deter-
minant of the array consisting of the first J rows and columns.

a“, Aiz " ayj

a Ces .
Aj - :12 6:122 ?2} (2_34)

i .(lz' ct a

The conditions, ’ ’ Y
A >0 A, >0 --- A, >0 (2-35)

are sufficient for a to be positive definite. *

* See Ref. 1 for a detailed proof. Also see Prob. 2-15.
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Example 2-5
) 1

_..
SRR
woN

The discriminants are
Ay = +1
A, =2 —1=+1
Ay =16 -4 —-13-2)+ 12 -2 = +1
Since all the discriminants are positive, this matrix is positive definite. The corresponding
invariants are

Bi=1+2+43=146
Bo=QR-1+@B—-D+(®6~-4=+5
Bs=A7Ay = +1 : )
@
1 1 1
1 =2 2
2 3
Since A, is negaiive (A, = —3), this matrix is not positive definite.

Suppose b is obtained from a by an orthogonal transformation:

b = pTap = p~lap (2-36)
If a is symmetrical, b is also symmetrical:
b" = pTa’p = pTap (2-37)
Now, b and a have the same characteristic values.* This follows from
b= AL = p e — ALp| = |a — AL (2-38)

Then, if a is positive definite, b is also positive definite. In general, the positive
definite character of a matrix is preserved under an orthogonal transformation.
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PROBLEMS

2-1. Consider the system
Ay = 1By (a)

where A and B arc symmetrical nth-order matrices and A is a scalar. Suppose
B can be expressed as (see Prob. 1-25)

B=b"b (b)
where b is nonsingular. Reduce (a) to the form
ax = Ix

where x = by. Determine the expression for a in terms of A and b.
2-2. Let x4y, x, be two nth-order column matrices or column vectors and
let ¢4, ¢, be arbitrary scalars. If

Xy + % =0

only when ¢; = ¢, = 0, x, and x, are said to be linearly independent. It follows
that x; and x, are lincarly dependent when one is a scalar multiple of the other.
Using (2-10) and (2-13), show that Q, and Q; arc linearly independent when

A #E Ao
2-3. Determine the characteristic values and the modal matrix for
3 2
(a) [2 7]
20 ,3
(b) 050
3 0 2

2-4. Following the procedure outlined in Prob. 2—1, determine the charac-
teristic values and modal matrix for '

12y, + 12y, = 4y,
12y; + 63y, = 9y,
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2-5. Suppose that b is derived from a by a similarity transformation.

b =p lap

Then,
b — AL| = la — AL

and it follows that b and a have the same characteristic equation.
(a) Deduce that
}Lib) — /}Lka)

B = gl

Demonstrate for .
1 =2 e 1
A=l 1) P72 o3

The fact that By, f2,..., B are invariant under a similarity trans-
formation is quite useful. i .
(b) Show that QP = p=1Q

2-6. When a is symmetrical, we can write
q'aq = b

Expressa™* in terms of g and A ™%, Use this result to find the inverse of

2-7. Positive integral powcrs of a square matrix, say a, arc defined as
2

= aa
a’ = aa’
2’ =aa !

If ja] # 0,a” " exists, and it follows from the definition that

(a) Show thata"is symmetrical when a is symmetrical.. ' o
(b) Let 4 be a characteristic value of a. Show that A is a characteristic
" .value of a” and Q; is the corresponding characteristic vector.

a'Q; = 4Q;

Hint: Start with aQ; = 1,Q; and premultiply by a. '
2_8. - A linear combination of nonnegative integral powers of ais called a
polynomial function of a and written as P(a). For example, the third order

polynomial has the form
P(a) = coa® + cia® + ca + ol

Note that P(a) is symmetrical when a is symmetrical.
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Let F(4) = 0 be the characteristic equation for a. When the characteristic
values of a are distinct, one can show that (see Ref. 1)

Fa)=20

where 0 is an nth-order null matrix. That is, a satisfies its own characteristic
equation. This result is known as the Cayley-Hamilton Theorem.

{a) Verify this theorem for
.= 2 1
12

Note: F(a) = a® — Bia + B.l,.
(b) Show that
- Lo,
a~ !l = B—(a" — Bia + fB,15) forn =3
3
(c) Establish a general expression for a~! using {(2-25).
2-9. Determine whether the following quadratic forms are positive definite.

(a) F =2x} + 4x;x, + 3x3
(b) F = 3.‘(% + SX% -+ 6x% - 4x1x2 -+ 6XIX3 — 8X2X3

2-10. Show that a necessary but not sufficient condition for a to be positive

definite is
gy > O,(llz > 0,...,([,,,, >0

(Hint: Takex; # Oand x; = Oforj #i,j=1,2,...,n)

2-11. If Ja| = 0, ax = 0 has a nontrivial solution, say x;. What is the
value of x1ax, ? Notc that 2 = 0is a characteristic value of a when a is singular.

2-12. Let C be a square matrix. Show that CTC is positive definite when
IC| # 0 and positive semidefinite when |C| = 0.
(Hint: Start with F = x"(C"C)x and let y = Cx. By definition, F can equal
zero only when x = 0 in order for the form to be positive definite.)

2-13. Consider the product CTaC, where a is positive definite and C is
square. Show that C"aC is positive definitc when |C| # 0 and positive semi-
definite when |C| = 0. Generalize this result for the multiple product,

CZCI~1 T C{acl T Cn—'ICn

2-14. Let a be an mth-order positive definite matrix and let C be of order
m x n. Consider the product,
b = CTaC

Show that b is positive definite only when the rank of C is equal to n. What
can we say about b when H(C) < n?
2-15. Consider the quadratic form

ayy Qyz 0 Qi) [ Xy

dip oy """ Qi X2
F = {x1x3" " x.]] - . ) :

Ain Q2n """ O Xn
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We partition a symmetrically,
(pxp) (pxg)_ (px1)

Ay Ap | 1Xy
ATZ A22 X2

(gxpy  (@xq {gx1)

F = [XIXZ]

where ¢ = n — p. The expansion of F = X”aX has the form
F = XTA“X1 + 2X’{A12A2 + X;AszZ
Now, we take X, = 0 and denote the result by F:
Fp = X{Al 1X1
For F, > 0 for arbitrary X,, A, , must be positive definite. Since JA,,|is equal
to the product of the characteristic valucs of A, it follows that |A; 1| must be
positive.
(a) Bytakingp = 1,2,...,n, deduce that - .

Ap = ‘Alll > 0
are necessary conditions for a to be positive definite. Note that it
remains to show that they are also sufficient conditions.

(b) Discuss the case where A, = 0.
2-16. Refer to Prob. 1-25. Consider a to be symmetrical.

(a) Deduce that one can always express a as the product of nonsingular
lower and upper triangular matrices when a is positive definite.

(b) Suppose we take

bnf—bzzz"'

p=41L2,...,n

= by = +1
Show that a is positive definitc when

g;; >0 j=12,...,n
and positive semi-definite when

g; =0 j=12,...,n

and at least one of the diagonal elements of g is zero.
() Suppose we take g = b”. Then,
G 11| = B1i]
and
A, = |Ag| = b11b3, - by,

Show that the diagonal elements of b will always be real when a is

positive definite.
2-17. If a quasi-diagonal matrix, say a, is symmetrically partitioned, the
submatrix A, is also a quasi-diagonal matrix. Establish that

az[Aiéij] i,j=1,2,...,N

is positive definite only when A; (i = 1,2,..., N) are positive definite.

‘ PROBLEMS 65
Hint: Use the result of Prob. 1-23. Verify for

00
0 0
21
5 2

S DO N
S O W

2-18. Suppose we expre > i-tri
for exanple PP press a as the product of two quasi-triangular matrices,
(exp) (pxq)

(n;n):[cu 0 .B“ Blz
Gy Gy |0 B,

@xp)  (gxq)
where p + g = n. We take
By = I, By, = I,

s.;h()w that the dlagOIlal S l are nonsin ulal 1()] alb tlaly p W]lell
llbnlatllces O
g g 1



