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5-6. Refer to Problem 5-3. Determine %% corresponding to %% = {1/2,
—1/4, 1/3, —1/10, 1/10, 0}. Verify that

FETUY = FETUR

5-7. Verify that (5-27) and (5-28) are equivalent forms. Note that

"'13_{_X'1'Q_]3 iOT ot \T
[0 LT X | L = (Zop)

5-8. Consider the plane member shown. The reference axis is defined by

X = f(xy)-

Xy : Prob. 5-8
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(a) Determine 7 5%. Note that the local frame at P coincides with the
basic frame whereas the local frame at Q coincides with the natural
frame at Q.

(b) Specialize part (a) for the case where

4a
Y2 =03 (xb = x})

and the x; coordinate of point Q is equal to b/4. Use the results of
Prob. 4-2.

Part |i

ANALYSIS OF AN
IDEAL TRUSS
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6
Governing Equations
for an Ideal Truss

6-1. GENERAL

A system of bars* connected at their ends by frictionless hinges to joints and
subjected only to forces applied at the joint centers is called an ideal truss.t
The bars are assumed to be weightless and so assembled that the line con-
necting the joint centers at the ends of each bar coincides with the centroidal
axis. Since the bars are weightless and the hinges are frictionless, it follows that
each bar is in a state of direct stress. There is only one force unknown asso-
ciated with each bar, namely, the magnitude of the axial force; the direction
of the force coincides with the line connecting the joint centers. If the bars lie
in one plane, the system is called a plane or two-dimensional truss. There
are two displacement components associated with each joint of a plane truss.
Similarly, a general system is called a space or three-dimensional truss, and
there are three displacement components associated with each joint.

We suppose there are m bars (members) and j joints. We define i as

i=2 for a plane truss

. (6-1)
i=3 for a space truss

Using this notation, there are ij displacement quantities associated with the j
joints. In general, some of the joint-displacement components are prescribed.
Let r be the number of prescribed displacement components (displacement
restraints) and n, the total number of unknown joint displacements. It follows
that

ng=ij—r 6-2)

Corresponding to each joint displacement restraint is an unknown joint force

* A prismatic member is conventionally referred to as a bar in truss analysis.
T See Ref. 1.
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116 GOVERNING EQUATIONS FOR AN IDEAL TRUSS CHAP. 6

(reaction). We let n, be the total number of force unknowns. Then,
ng=m-+r (6-3)
Finally, the total number of unknowns, n, for an ideal truss is
n=n;+n =i +m (6-4)

The equilibrium equations for the bars have been used to establish the fact
that the force in each bar has the direction of the line connecting the joint
centers at the ends of the bar. There remains the equilibrium equations for the
joints. Since each joint is subjected to a concurrent force system, there are ij
scalar force~-equilibrium equations relating the bar forces, external joint loads,
and direction cosines for the lines connecting the joint centers in the deformed
state. In order to solve the problem, that is, to determine the bar forces, reac-
tions, and joint displacements, m additional independent equations are required.
These additional equations are referred to as the bar force-joint displacement
relations and are obtained by combining the bar force-bar elongation relation
and bar elongation—joint displacement relation for each of the m bars.

In this chapter, we first derive the elongation—joint displacement relation for
a single bar and then express the complete sct of m relations as a single matrix
equation. This procedure is repeated for the bar force-elongation relations and
the joint force-equilibrium equations. We then describe a procedure for in-
troducing the joint-displacement restraints and summarize the governing equa-
tions. Finally, we briefly discuss the solvability of the governing equations for
the linear case. In this case, the question of initial instability is directly related
to the solvability.
 In Chapter 7, we develop variational principles for an ideal truss. The
two general procedures for solving the governing equations are described in
Chapters 8 and 9. We refer to these procedures as the displacement and force
methods. They are also called the stiffness and flexibility methods in some
texts.

The basic concepts employed in formulating and solving the governing
equations for an ideal truss are applicable, with slight extension, to a member
system having moment resisting connections. Some authors start with the
general system and then specialize the equations for the case of an ideal truss.
We prefer to proceed from the truss to the general system since the basic
formulation techniques for the ideal truss can be more readily described. To
adequately describe the formulation for a general system requires introducing
a considerable amount of notation which tends to overpower the reader.

6—2. ELONGATION-JOINT DISPLACEMENT RELATION FOR A BAR

We number the joints consecutively from 1 through j. It is convenient to
refer the coordinates of a joint, the joint-displacement components, and the
external joint load components to a common right-handed cartesian reference
frame. Let X;, 7; (j = 1, 2, 3) be the axes and corresponding orthogonal unit
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;/ztc:ltors for the basic frame. The initial coordinates, displacement components
2 componpnts of the resultant external force for joint k are denoted b);
Xiis Ui, P (J = 1, 2, 3) and the corresponding vectors are written as

- + T
Bo= Y Xl = %7

=1
i = ufi (6--5)
pre . T.
DPr = pii

:heﬁcoordinates and position vector for joint k in the deformed state are
kjs Flk-

- . T- - P
Pr = Ml = 7 + gy

W = X + ©-9

Figure 61 illustrates the notation associated with the Jjoiats.
X3

Deformed position Uil
of joint & H

Undeformed position
of joint &

Xy
Fig. 6~1. Notation for joints.

. \{\(’)?n?:rzl;er dthe kz;t};rs from 1 through m and consider bar n to be connected
j ¢ and s. € centroidal axis of bar n coincides with i
oints k ' the line con-
necting joints k and s. From Fig. 6-2 the initi ar
. . . itial length of bar .
L,, is equal to the magnitude of the vector A7 = 7 -—gi’k: " denoted by

2 Am . Am
LZ = AF- AV (6-7)
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Since the basic frame is orthogonal, (6—7) reduces to
3
L,f = (X — %) (X, — %) = Z (xs5 = xkj)z (6-8)
j=1

Before the orientation of the bar can be specified, a positive sense or direc-
tion must be selected. We take the positive sense for bar n to be from joint k

X3

Fig. 6—2. Undeformed position of Bar n.

to joint s and define «,; as the direction cosine for the positive sense of bar n
in the undeformed state with respect to the X; direction:

) 1
Upj = E(A" 1) = ‘L‘(xsj = Xij) 6-9)

It is convenient to list the direction cosines in a row matrix, o.

) 1
o, = [avxlan2a1x3] = Z (xs - xk)T (6—10)

Note that a,a] = 1, due to the orthogonality of the rcference frame. Finally,

we let i, be the unit vector associated with the positive direction of bar n in
the undeformed state. By definition,

- | R .

b, = — AF = a,i

The deformed position of bar n is shown in Fig. 6—3. The length and direc-

tion cosines for bar r are equal to the magnitude and direction cosines for the

vector, Ap = ps — px. Let L, + e, be the deformed length, ¥, the unit vector

(6-11)

-
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X3

Ap = Un +en) Vr Joint s
Joint k /

f
| |
| Bar n I
~ | 5 |
bf & 1
] Ns3
] !
| s |
| |
i ~ i
) I
/
_____ .y kY | /
k2 | // Tst
[
________________ -V
Ns2

X,

Fig. 6-3. Deformed position of Bar n.

associgted x.vith.the po§itive direction in the deformed state, and B. the corre-
sponding direction cosine matrix. These quantities are defined by

Ln + €)” = Ap - Ap (6-12)
- 1 s o
Vo = Iie Ap = B,i (6-13)
g = 1 S
nj = Ln i Z(Ap ) lj) (6~14)
We consider first (6-12). Substituting for Ap,
. Ap = AF + (4, — @) (a)
and noting (6~7), (6-11), we obtain, after dividing both sides by L2,
|4 2 2. 1
*L_" =1+ 'L—ndn(us — ) + Iz (g — u) (u; — wy) (6-15)
The expression for the direction cosine, f,;, expands to
—_— 1 -
ﬁnj - e, [(xnj + z—(usj - ukj)] (6_16)
1+ 7 "

n

We list the f’s in a row matrix, p.
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B = — o+ (- w)” (6-17)
n"1+en n L,, s k.
L

n

By definition, e, is the change in length of bar n. Then, e,/L,, is the extensional
strain which is considerably less than unity for most engineering materials. For
example, the strain is only 1077 for steel at a stress level of 3 x 10% ksi. The
relations simplify if we introduce the assumption of small strain,

en/Ly < 1 (6-18)
Expanding the left-hand side of (6-15), and noting (6—18), we obtain
1
e, = d”(lls - uk) + == (us - uk)T(us - uk) (6_19)
2Lll
The direction cosines for the deformed oricntation reduce to
1
Bn ~ Uy + T‘ (us - uk)T (6—20)

To simplify the expression for e, further, we need to interpret the quadratic
terms. Using (6-20), we can write (6—-19) as

o= (3450, ) o, = ) @

This form shows that the second-order terms are related to the change in
orientation of the bar. If the initial geometry is such that the bar cannot ex-
perience a significant change in oricntation, then we can neglect the nonlinear
terms. We use the term linear geometry for this case. The linearized relations
are
€p X an(us - uk)
BII ~ aﬂ

We discuss this reduction in greater detail in Chapter 8. Since we are concerned
in this chapter with the formulation of the governing equations, we will retain
the nonlinear rotation terms. However, we will assume small strain, ie., we
work with (6-19), (6-20).

(6-21)

6-3. GENERAL ELONGATION-JOINT DISPLACEMENT RELATION

We have derived expressions for the direction cosines and elongation of a bar
in terms of the initial coordinates and displacement components of the joints
at the ends of the bar. By considering the truss as a system or network, the
geometric relations for all the bars can be expressed as a single matrix equation.
The relations for bar n, which is connected to joints s and k (positive direction

P e T T
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from k to s) are summarized below for convenience:

Lr% = (Xs - Xk)r(xs - xk)

1
o, = 'I:(Xs — Xk)T
e, = Yulu, — W) @

Il

1
o, + 5 (U, — w)”

Tn oL,

1
=, +— (n, — w)"
B n L,, s k)

Up to this point, we have considered joints s and k as coinciding with the
positive and negative ends of member n. Now we introduce new notation which
is more convenient for generalization of the geometric relations. Let ny, n_
denote the joint numbers for the joints at the positive and negative ends of
member n. The geometric rclations take the form (we replace s by n, and k
by n_ in (a)):

Lﬁ = (xru - xn..)T(Xn+ - xn_)
1

A, = E(X"* - xn-)T
n

€n = ’Y"(“Ih» - utu) (6“22)

1
=0+ oy, -, T
1 S G, = )

‘N

ﬁn = 0oy + (umr - uu,)T

L,

To proceed further, we must relate the bars and joints of the system, that is,
we must specify the connectivity of the truss. The connectivity can be defined
by a table having m rows and three columns. In the first column, we list the bar
numbers in ascending order, and in the other two columns the corresponding
numbers, n, and n_, of the joints at the positive and negative ends of the mem-
bers. This table is referred to as the branch-node incidence table in network
theory.* For structural systems, a branch corresponds to a member and a node
to a joint, and we shall refer to this table as the member-joint incidence table
or simply as the connectivity table. It should be noted that the connectivity
depends only on the numbering of the bars and joints, that is, it is independent
of the initial geometry and distortion of the system.

Example 6-1

As an illustration, consider the two-dimensional truss shown. The positive directions of
the bars are indicated by arrowheads and the bar numbers are encircled. The connectivity

* See Ref. 8.
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table (we list it horizontally to save space) for this numbering scheme takes the following
form:

Bar, n 123 45 6 7 8 9 10 11

+Joint (ny) 1 2 4 5 1 23 1 2 4 5

~Jomt (n.) 2 3 5 6 4 5 6 5 6 2 3

Fig. E6-1

6 @ 5 @ 4

With the connectivity table, the evaluation of the initial length and durection cosines can
be easily automated. The initial data consists of the j coordinate matrices, X;, Xz, .. ., X;.
To compute L, and &, we first determine n,. and k- from the connectivity table and then
use the first two equations of (6-22). For example, for bar 8,8, = 1,8_ = 5, and

Xg, — Xg_ = X; — X5
Ly = (x; — XS)T(Xl -~ Xs)

I

1 .
% =1 (xy —~ xs5)"

We define e and 4 as the system elongation and joint-displacement matrices,

e = {e17 €2, .., em}

(6-23)
% = {ul,“z,...,Uj}

and express the m elongation-displacement relations as a single matrix equation

¢
(6-24)

u=IU
where o is of order m x ij. The elements in the nth row of & involve only
the elements of y,. Then, partitioning ./ into submatrices, .oy, of order 1 x i,
where k =1,2,...,mand £ = 1,2,...,/, it follows that the only nonvan-
ishing submatrices for row n are the two submatrices whose column number
corresponds to the joint number at the positive or negative end of member n,

B i e P
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namely, ny and n_:

Ly, = +Yn

= 7y, (6-25)

Ay =0 when £ # n,orn_

Example 6-2

On’i‘heu;nl matrix can be readily established by using the connectivity table. For row n
e Zense ;1},;0{211 cc())};xgn r;;, ~Yn atfco[umn n_, and null matrices at the other locations,
€ o/ matrix for the truss treated in E ) is 1i ‘
We have also listed the elongati joi i atices to s velow.
Ve | k gations and joint displacement matrice i
significance of the rows and partitioned columns of o7 ? 10 emphasize the

uy u; u; u, us ug
 S—
e Y1 =T 0 0 0 0
€ 0 Y2 | =72 0 0 0
€ 0 0 0 Y3 | —7s3 0
G 0 0 0 0 Yo | =V
es Ys 0 0 | -y 0 0
€ { 0 76 0 0 =¥s 0 -
€7 0 0 bE 0 0 — 4
€g T8 0 0 0 . 0
S
e | 0 Yo 0 0 0 —¥o

N

€19 0 —~Y10 0 Yio 0 0
e { 0 l 0 —Y11 0 Vi1 0
_

‘ tThe &7 matrix depends on both the geometry and the topology. It is of
u} erest to express .o/ in a form where these two effects are segregated. The form
of (6~25) suggests that we list the ¥’s in a quasi-diagonal matrix

Y1

Y
r=[ (6-26)
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and define C as
[Cu] k=12,....,m
= ket | . .
{=1,2,...,j (6-27)
Cmn = +Iz Cnu_ = “Ii
C.=0 £+#n, orn_
Then,
s =5C (6-28)

The network terminology* for C is augmented branch-node incidence matrix.
We shall refer to it simply as the connectivity matrix.

Example 6-3

The connectivity matrix for Example 6—1 is listed below. The unit matrices are of order
2 since the system is two-dimensional.

Joint Numbers

1 2 3 4 5 6
1 +1I, -1,
2 +L | L
3 +1, ~12
4 +1; -1
5 +1, -1
Bar
Numbers 6 +1, -1,
7 +1, -1
8 +1, -I
9 +1I, -I
10 -1 +1Iz
11 -1, +1,

One can consider row n of C to define the two joints associated with bar n. 1t follows
that column k of C defines the bars associated with joint k. This association is usually

* See Prob. 6-6. See also Ref. 8.
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referred to as incidence. We say-that a joint is positive incident on a bar when it is at
the positive end of the bar. Similarly, a bar is positive incident on a joint when its positive
end is at the joint. For example, we see that joints 1 and 4 are incident on bar 5 and
bars 3, 4, 6, 8, and 11 are incident on joint 5. We will use this property of the connectivity
matrix later to generalize the joint force-equilibrium equations.

6-4. FORCE-ELONGATION RELATION FOR A BAR

~ By definition, each bar of an ideal truss is prismatic and subjected only to
axial load applied at the centroid of the end cross sections. It follows that the
only nonvanishing stress component is the axial stress, o, and also, ¢ is con-
stant throughout the bar. We will consider each bar to be homogeneous but
we will not require that all the bars be of the same material. The strain, ¢, will
be constant when the bar is homogeneous and the force-elongation relation
will be similar in form to the uniaxial stress-strain curve for the material.

A typical o-¢ curve is shown in Fig. 6-4. The initial portion of the curve is
cssentially straight for engineering materials such as steel and aluminum. A
material is said to be clastic when the stress-strain curve is unique, that is,

'when the curves corresponding to increasing and decrecasing o coincide (OAB

and BAO in Fig. 6—4). If the behavior for decreasing o is different, the material
is said to be inclastic. For ductile materials, the unloading curve (BC) is essen-
tially parallel to the initial curve.*

[ Elastic

behavior
B
7/
»
/
s

e .

A / N Inelastic behavior
Ve
/
s/
/
7
- €
0 C

Fig. 6—4. Stress-strain curves for elastic and inelastic behavior.

We introduce the following notation:

A = cross sectional area
F

)

I

axial force, positive when tension

initial elongation, i.e., elongation not associated
with stress

I

* A detailed discussion of the behavior of engineering materials is given in Chap. 5 of Ref. 2.



126 GOVERNING EQUATIONS FOR AN IDEAL TRUSS CHAP. 6
Since the stress and strain are constant throughout the bar,
F =04
e= Lg (6-29)
ey = Lgg

We convert the o-¢ relation for the material to the force-elongation relation
for the bar by applying (6—29).

—

¢ = Leg
Fig. 6-5. Linear elastic behavior.
We consider first the case where the stress-strain relation is linear, as shown

in Fig. 6-5. A material having this property is called Hookean. The initial and
transformed relations are

o = E(& — &)
Y
F = f‘gi(e — eg) = k(e — e) (6-30)

L
e:h—EFﬁ—eO:fF—l-eo
We call k, f the stiffness and flexibility factors for the bar. Physically, k is the
force required per unit elongation and f, which is the inverse of k, is the elon-
gation due to a unit force.

We consider next the case where the stress-strain relation is approximated
by a series of straight line segments. The material is said to be piecewise linear.
Figure 6-6 shows this idealization for two segments. A superscript (j) is
used to identify the modulus and limiting stress for segment j. The force-
elongation relation will still be linear, but now we have to determine what

TOETAY TR

!"l"s—qa_‘-‘\,-' .
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o F
-
—=>
FOL
e®
€ L. I/
| I —
Fig. 6-6. Piecewise —

linear approximation.

z:egm.ent tlhe c_ieformation corresponds to and also whether the strain is in-
asing (loading) or decreasing (unloading). For unloading, the curve is as-

sumed to be parallel to the initial s * ] i
ed to _ segment.* The relatio i
possibilities are listed below. e for th-e' vanows

1. Loading or Unloading—Initial Segment

F < AgW) = F .

F = kMe — ¢v) (6-31)
2. Loading—Second Segment

FY < F < Ag® = F@
F = k2 — o) (6-32)
882) - e})l) + (f(l) - Q/’QJ)F(”

3. Unloading—Second Segment

FO < px < po

F = ke — ¢f) (6-33)
e?f = ¥ _f(l)]:*

One can readily generalize these relations for the nth segment.f

* We are neglecting the B i
 Sep oo peglec g the Bauschinger effect. See Ref. 2, Sec. 5.9, or Ref. 3, Art. 74,
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Example 6-4
We consider a bilinear approximation, shown in Fig. E6-4.
Fig. E6-4
o (ksi) F (kips)
40+
5% 10° 40
1
30} —=>
30+
X 10°
10 e(()z)
1 /
/
/
J -
e (in./in.) e(in.)

¢y
Taking
L =10ft = 120in A= 1in?
we obtain
AED e
kY = = 833 kips/in.  fW = 1k = 12 x 107 % in./kip
AE® . e
kP = = 417 kipsfin. % = 24 x 107% in/kip
F® = 4g™ = 30 kips
P = e + (fN — fOYFD = [20¢, — 036 in.
Segment 1 F = (83.3)(e — 120 &)
Segment 2 F = (41.7)(e — &)
@

Suppose a force of 35 kips is applied and the bar is unloaded. The equivalent initial
strain is (see Equation 6-33 and Fig. 6--6):

et = e* — fWOF*
ef = e + (f@ — fOVF* = e + 0.06 in.

The procedure described above utilizes the segment stiffness, which can be
interpreted as an average tangent stiffness for the segment. We have to modify
the stiffness and equivalent initial elongation only when the limit of the seg-

T .

B T e o i e R 358 S EET A e Bk P P o S

T N [T e e 8 T T LR I

e

. P
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e

b
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ment is reached. "An alternate procedure is based on using the initial linear
stiffness for all the segments. In what follows, we outline the initial stiffness
approach.

FOR -

F—e® __.4

€0, eq. ]

Fig. 6-7. Notation for the initial stiffness approach.

Consider Fig. 6-7. We write the forcc-clongation relation for segment 2 as

F = kU — e — A
= k(ll(e - eO,cq)

where e, ., is interpreted as the equivalent linear initial strain and is given by

(6-34)

eO,c = eg) +‘ f(l)A ~
/;] = (kD — kP)(e — o) — fOFW) (6-35)

The equivalent initial strain, ¢, ., depends on e, the actual strain. Since e in
turn depends on F, one has to iterate on e, ., regardless of whether the seg-
ment limit has been exceeded. This disadvantage is offset somewhat by the use
of k' for all the segments.

The notation introduced for the piecewise linear case is required in order to
distinguish between the various segments and the two methods. Rather than
continue with this detailed notation, which is too cumbersome, we will drop
all the additional superscripts and write the force-deformation relations for bar
nin the simple linear form

Fn = kn(en - eo.n) (6—36)
€n €o,n + ann

i
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where k, f, and e, are defined by (6-31) through (6-35) for the physically
nonlinear case.

6-5. GENERAL BAR FORCE-JOINT DISPLACEMENT RELATION

The force-deformation and deformation-displacement relations for bar n are
given by (6—22) and (6—36). Combining these two relations leads to an expres-
sion for the bar force in terms of the displacement matrices for the joints at
the ends of the bar. The two forms are:

Fn = kn(en - e(),n) = FO,n + kn’Ynum, e knynun- ' (6_37)
FO,n = _kne().n
and
?n(un+ - “n_) = €, = €y,n -+ ann (6—38)

We can express the force-displacement relations for the “m” bars as a single
matrix equation by defining

F = {F,F, - F,}

6-39
‘ (6-39)
k = k2 = f!
Ky

and noting (6-24). The generalized forms of (6-37) and (6-38) are:

F = k(e — ep) = Fo + ket U (6-40)
and

AU = ey + fF (6-41)

6—6. JOINT FORCE-EQUILIBRIUM EQUATIONS

Let F, be the axial force vector for bar n (see Fig. 6-8). The force vector
has the direction of the unit vector, ¥,, which defines the orientation of the bar
in the deformed state. Now, ¥, = p,i. Then,

F, = F,5, = Fp (6-42)
When F, is positive, the sense of F, is the same as the positive sense for the

bar. Continuing, we define F,,, and F,,_as the forces exerted by bar n on
the joints at the positive and negative ends of the bar. From Fig. 6-38,

fmu = —F nﬂni

=L ) (6-43)
Fo. = +F, = +FB,i
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/ Joint n,
F,

A{ :Fn;;
/an..

Fig. 6—8. Notation for barforce.

ny
Joint n_

We consider next joint k. The external joint load vector is p,, where
b = pii. For equilibrium, the resultant force vector must equal zero. Then,

= — Z Fjj+ - cZ’.k fu_ (a)

The first summation involves the bars which arc positive incident on joint k
(positive end at joint k) and the second the bars which are negative incident.
Using (6—43), the matrix equilibrium equation for joint k takes the form:

= ¥ FOD~ % F6D (6-44)

J+= -=

Let #2 be the general external joint load matrix:

P = PP 0} x 1) L (6-49)

~ We write the complete set of joint force-equilibrium equations as:

P = BF (6-46)

Note that the rows of 2 pertain to the joints and the columns to the bars.
We partition 4 into submatrices of order i x 1.

e%:[‘@(k]
t=12,...,j and

(i x m)

—47
k=1,2,...,m (6-47)

Since a bar is incident only on two joints, there will be only two elements in
any column of 28. From (6—44), we see that, for column #,

*@mrn = +Br:nr
By o= —Ppr (6-48)
By =0 when  #n,orn_

The 2 matrix can be readily developed using the connectivity table. It will
have the same form as /T with y, replaced by §,. When the geometry is linear,
B.=v,=0,and B = 7.
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-
Example 6-5

general form:

The 7 matrix for the truss of Example 61 has the following

Bar Numbers

1] +87 +8% \Hi%
20 —pT| +B2 +5%
2 - +$3
g
Zg 4 +B5 -85
é T T T )
5 “‘M +Pa —P6
RO -
— 4 -8
T el [

We could have also utilized the connectivity* mat
pointed out in Example 6~3 that the elcments c?f th
the incidence of the bars on joint k. Using this property,

generalized form of {6—44) as

rix C to develop 4. 1t was
he kth column of C define
we can write the

» = CT§'F (a)
where
BL 0 PN 0
p-|® B 0 (m x im) (6-49)
(') (.) U ﬁ"t
Finally, we have # = CTpT 60y 6250
6-7. INTRODUCTION OF DISPLACEMENT RESTRAINTS;
GOVERNING EQUATIONS
We have developed the following equations relating F, e, 2, and %,
e=ﬂ@l=eo+fF (a)

P = BY

where the elements of ' : ‘
joint-load matrices arranged in ascending or

have considered t

* See Sec. 6-3, Eq. 6-27.

¢ and 2 are the external joint-displacement and external

der. Also, in our derivation, we

he components to be referred to a basic reference frame. Now,

e
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when joint displacement restraints are imposed, there will be a reduction in
the number of joint displacement unknowns and a corresponding increase in
the number of force unknowns. This will require a rearrangement of %, <7,
P and A.

Let r be the number of displacement restraints and n, the number of displace-
ment unknowns. There will be n, prescribed joint loads and r unknown joint
loads (usually called reactions) corresponding to the n,; unknown joint displace-
ments and the r known joint displacements. We let U, U, be the column
matrices of unknown and prescribed joint displacement components and Py,
P, the corresponding prescribed and unknown joint load matrices. The re-
arranged system joint displacement and joint load matrices are written as U, P:

— 9_1_ (g x 1)
U= {Uz}(r x 1)

_ ?.1. (n‘, X 1)
P“{PZ}(rx D

iy + ¥ =1

(6-51)

We point out that the components contained in U (and P) may be referred to
local reference frames at the various joints rather than to the basic frames.
This is necessary when the restraint direction at a joint does not coincide with
one of the directions of the basic frame. Finally, we let A and B be the trans-
formation matrices associated with U and P. Then, (a) takes the form:

e:&iq[=AU=eo+fF (b)
P = BF

We partition A, B consistent with the partitioning of U, P:

AZ‘—:?[Al { AZ]

(m X na) (mxr)
B, |(n; x m) (6-52)
B=|_-
BZ (1’ X m)
and write (b) in expanded form:
e = AIU’_ + AZUZ = eo + fF (6"53)
P, = B,F (6-54)
Pz = BzF \ (6”‘55)

Equation (6-53) represents m equations relating the m unknown bar forces,
the n, unknown displacements, and the r prescribed displacements. Equation
(6—54) represents n; equations involving the m unknown bar forces and the
ng prescribed joint loads. Lastly, Equation (6-55) represents r equations. for
the r reactions in terms of the m bar forces. When the geometry is nonlinear,
A and B involve the joint displacements. If the geometry is linear, A = B7, and

B =A] j=12 (6-56)
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We have introduced the displacement restraints into the formulation by
replacing </, 98 with A, B. It remains to discuss how one determines A, B
from 7, 2. In the following section, we treat the case of an arbitrary restraint
direction. We also describe how one can represent the introduction of displace-
ment restraints as a matrix transformation.

6-8. ARBITRARY RESTRAINT DIRECTION

When all the restraint directions are paralle] to the direction of the global
reference frame, we obtain U from ¢ by simply rearranging the rows of ¥
such that the elements in the first n, rows are the unknown displacements and
the last r rows contain the prescribed displacements. To obtain A, we perform
the same operations on the columns of of. Finally, since P corresponds to U,
we obtain B by operating on the rows of 24 or alternately, by operating on the
columns of BT and then transposing the resulting matrix. .

When the restraint at a joint does not coincide with one of the directions of
the basic frame, it is necessary first to transform the joint displacement and
external load components from the basic frame to a local frame associated with
the restraint at the joint. Suppose there is a displacement restraint at joint k.
Let Y¢(j =12, 3) be the orthogonal directions for the local reference frame
associated with the displacement restraint at joint k. Also, let uf; and pf; be
the corresponding displacement and external joint load components. Finally,
let R% be the rotation transformation matrix for the local frame at joint k with
respect to the basic frame (frame 0). The components are related by:

k ok
u; = R*w,
. (6-57
Pi = R%py , )
where
R%* = [cos (Y}, X})] (6-58)

We have omitted the frame superscript (o) for quantities referred to the basic
frame (ug;, phy) to simplify the notation.

We define %’, 2’ as the system joint-displacement and -force matrices
referred to the local joint reference frames, :

U = {u,u3, ..., ul}
4 6-59
? = {pLrs ...} (6-59)
and &% as the system joint-rotation matrix,
Rol
Roz
R = . (6—60)
. o
- Then, ’
QY = (E%OJ)T@{J
’ (a)

,@J — '@olg)
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Operating on the initial equations with (a),

(e = AU) = (e = LU’
(P = BF) = (P = B'F) ®
leads to

J oJ 3 oNT
B = RB A = AR (6-61)

ghe tr.ansformation of 2’ to A is the same as for the case where the restraint
1rlectlons are parallel to the directions of the basic frame, that is, it will involve
only a rearrangement of the rows of #7. Similarl Jtain A i
. , weobtain A b
the columns of s#7. The steps are ’ Y IRTTRIES
oA > o - A-[A | A

B> B > B B,
B,

Example 6-6

To obtain thclsubmatrices in column k of &7 we postmultiply the submatrices in column
k of A by R"f" T We can perform the same operation on 287 and then transpose the
resuluflg matr.1x or, alternately, we can premultiply the submatrices in row k of 2 by R%
As an 1l.iustrat10n, sec the 28’ matrix for Example 6-5 on page 136. The s’ matrix ! b .
determined by t'ransposing 2’ and replacing B, by ¥,. o e

One can ylsuahze the introduction of displacement restraints as a matrix
transformation. We represent the operations

U - U d
N an P - P (6-62)
U=D% P=D2

and call D the displacement-restraint transformation matrix.

When the rest.ramt directions are parallel to the directions of the basic frame
Dis a permutation matrix which rearranges the rows of 4. We obtain D b};
d?pl?ng tge sar’zrw row rearrangement to a unit matrix of order ij. Postmulti-

ication |
% eat D‘l‘y D' effects the same rearrangements on the columns. Also,*

For the general case of arbitrary r int directi

y restraint directions, we i J
bt i , we first determine 4

J o oJ,
U = RU (@)

; . .
The step, %’ — U, involves only a permutation of the rows of U’ and can be

represented as .
U = %’ (6-63).

where I is the permutation matrix corresponding to the displacement restraints.

* See Prob. 1-36 for a discussion of permutation matrices.
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; Combining (a) and (6—63), we have
T 1 -1 ] .=
5 s § U = R u ()
= - ) i and it follows that .
! t D = nx” (6-64)
[ ]
2 o= ‘Since both I and #°’ are orthogonal matrices, D is also an orthogonal matrix.
f %‘ *é‘ Using (6—62),
a ! B = D#
o A = MDT (C)
=2 &
o % "“ and then substituting for <7, 2, and D in terms of the geometrical, connectivity,
local rotation matrices lead to
N o0
-2 % B = I2"kCy 6-65
w| 0 A = yCIR") (663
“ E_,;L Equation (6-65) is of interest sinc.e the various terms are isolated. However,
- "?:: 9 one would not generate A, B with it.
© |
|
3 - o 6-9. INITIAL INSTABILITY
s = by
E | w };‘ I The force equilibrium equations relating the prescribed external joint forces
o ‘ ‘ and the (internal) bar forces has been expressed as (see Equation 6-54):
5 : ] :
:;5 E;’ :é: .‘, p( = Bll? (a)
R & ! . . * .
s | ] where Py is (n; x 1) and F is (m x 1). When the geometry is nonlinear, B,
% | | depends on the joint displacements as well as on the initial geometry and
& & h restraint directions. In this section, we are concerned with the behavior under
o 4 "f an infinitesimal loading. Since the nonlinear terms depend on the load intensity,
i they will be negligible in comparison to the linear terms for this case, i.e., we
o | o 1 take B, as constant. Then, (a) represents », lincar equations in m unknowns.
- R 'ﬁ If thesc equations are inconsistent for an arbitrary infinitesimal loading, we say
o > | & , N
I ui the system is initially l.ms'table. o _ o
I When the geometry is linear, B, is independent of the loading and the initial
g | kg E stability criterion is also applicable for a finite loading. This is not true for a
o 'éﬁ % ! nonlinear system. We treat stability under a finite loading in Chapter 7.
! ! Consider a set of j linear algebraic equations in k unknowns.
v | w 3 ax = ¢ (b)
<l k| ‘f: In general, (b) can be solved only if a and [a | c] have the same rank.* It follows
! e that the equations are consistent for an arbitrary right-hand side only when
© ow o om ow W ® Lf,i the rank of a is equal to j, the total number of equations. Applying this condition
ke ;\3 —_— ; * See Sec. 1—-13; see also Prob. 1-45.
R




138 GOVERNING EQUATIONS FOR AN IDEAL TRUSS CHAP. 6 SEC. 6-9. INITIAL INSTABILITY
j 139
to (a), we see that the truss is initially unstable when the rank of B is less | .
: Example 68
than n,.
For the truss to be initially stable under an arbitrary loading, B, must be ‘
; . . > ] We first develop the & i o .
of rank n,. This requires m > n,. That is, the number of bars must be at least it for various restrg int cominit?;‘;: for the truss shown in Fig. E6-8A and then specialize
equal to the number of unknown displacement components. Since the rank : ’
may still be less than n,, this condition is necessary but not sufficient for initial |
stability. In order to determine whether a truss is initially stable, one must ] : ' . Fig. E6-8A
i

actually find the rank of By. The following examples illustrate various cases ,
of initial instability.

Example 67 {
i
Xa
The force-equilibrium equations for the accompanying sketch are: l @
: |
) . Fig. E6-7 l
i @ ,_02 MQ 1
Y 1
X, i y
@ @ m=s
Hg = 5 F
Xy @ Fy F, Fsy Fq4 Fs Fg
P
42; —0 3 ! @ pu ~1 —cos §
@ P2 +1 si‘n 0
¥ —
@ pu | +1 .
F, F, F, F. ” cos
@ P22 - 1 | i
Pis 1 : » 1 sin 0
®
P12 +1 bai +1 cos 0
R
Y P
Py py +1 ' © pa -1 —sin 0
P22 +1 @ pa -1 —cos
P31 +1 pe | |7 —sinf
Row 3 is (—1) times row 1. The equations are consistent only if p,; = —py1. : There are three relations between the rows of 28:
Sutlceﬁn ; (r;,g, we(llcgm))w the system is unstable for an arbitrary loading without { 1) o) ) 3
actually finding r(B,). row @ + row @ + row ® = ~row @
] @ row @ + row @ + row ® = —row ®
3) (sin @)xow @ + row ) — cos  (row @) = cos 0 (row ®)
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The first two relations correspond to the scalar force equilibrium conditions for the external
joint loads:

Pir = P11 + P21 + D3y + Par =0
1

Ms

k

4 @
Y Do = P12 + P2z + P32 + Paz =0
k=1
The third relation corresponds to the scalar moment equilibrium condition:
4 4
> M= Z (~XiaPrt + Xe1Pe2) = 0 Q)]
k=1 k=1

where M, is the moment of the external force vector acting at joint k with respect to point
0, the origin of the basic frame. We obtain relation (3) by taking O at joint 4. Equation (b)
reduces to

—d(pyy + pas) + b(p22 + P32) =0 (©
Using : i
d = Lsin0
d
b= Lcos0 @
we can write (c) as
cos 0 p3z = sin O(pyy + p21) — €08 0 paz (e)

which is relation 3.

We see that rows 2 and 5 are independent. The remaining set (rows 1,3,4,6,7, 8)
contains only three independent rows. Now, we obtain B, from 28 by first taking a linear
combination of the rows (when the restraints are not parallel to the basic frame) and then
deleting the rows corresponding to the joint forces associated with the prescribed joint
displacements. Since 2 has three linear dependent rows, it follows that we must introduce
at least three restraints. Initial instability will occur if—

1. An insufficient number of restraints are introduced (g > 5).

2. A sufficient number of restraints are introduced (1, = 5) but the rows of B; are
not linearly independent. We say the restraints are not independent in this case.
These cases are illustrated below.

Case 1

Fig. E6-8B

2

—

X2 ﬂ\
m=6

71,1:6
X1

#
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We obtain B, by deleting rows 6 and 8 {(corresponding to p;, and p,,). The system is
stable only when the applied joint loads satisfy the condition

P11 + P2y + Pag = —Pay

Case 2

Fig. E6-8C

1Q %/

Xy

%}4
We delete rows 4, 6, and 8. The number of restraints is sufficient (n, = 5) but the restraints

are not indcr{endent since r(B;) < S. Actually, #(B;) = 4. To make the system stable, at
least onc horizontal restraint must be introduced.

In Example 6-8, we showed that there are three relations between the rows
of & for a two-dimensional truss. These relations correspond to the force- and
moment-equilibrium conditions for the complete truss.

To establish the relations for the three-dimensional case, we start with the
equilibrium equations,

Jj (ix1)

Z pe= 0 (a)
(=1

J (2i—-3)x1
Sme »

where M, is the moment of p, with respect to an arbitrary moment center, 0.
H or convenience, we take O at the origin of the basic relerence frame. Par-
titioning 48,

(6-66)

where 2, is of order (i x m) and using the matrix notation introduced in
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Sec. 5-2 for the moment,* the equilibrium equations take the form
i
> B, =0 (6-67)
t=1
J
Y X% =0 (6-68)
£=1

Equation (6—67) represents i relations between the rows of 2,

tow g + row (g + i) + -+ + row [i(j — 2) + ¢] = row [i(j — 1) + q]
g=12,...1i
(6-69)

and (6—68) corresponds to (2i — 3) relations.

We have shown that therc are at least 3(i — 1) relations between the rows
of . Now, we obtain B by combining and rearranging the rows of 4. It
follows that B will also have at least 3(i — 1) rclations between its rows. Finally,
we obtain B; by deleting the rows corresponding to the restraints. For the
system to be initially stable, we must introduce at least 3(i — 1) restraints:

r = no. of restraints = 3(i — 1) (6-70)

Note that this requirement is independent of the number of bars. Also, it is a
necessary but not sufficient condition for initial stability.
The number of restraints must also satisfy the necessary condition n; < m.

This requires
(6-71)

Both (6-70) and (6-71) must be satisfied. Either condition may control r,
depending on the arrangement of the bars.

r= G = n) > (i — m)
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PROBLEMS

6-1. Determine m, j, r, and n, for the following plane trusses:

6-2.

(@)
(b)

6-3.

Prob. 61

g

(b)
Suppose bar # is connected to joints s and k where
xe={L,L0}(f) x,={5 -5 —2}(f)

Take‘ the positive direction of bar n from k to s. Determine L, o,
and i,.
Suppose

i

uw, = {1/10, 1/20, 1/10}
s = {1/20, —1/10, —1/30}

(inches)
(inches)

i

u

Find M and ;. Note that the units of x and u must be consistent.
Determine ¢, and B,, using the exact expressions (Equations 6-15
6-17), the expressions specialized for the case of small strain (Equa:
tions 6-19, and 6-20), and the expressions for the linear geometric
case (Equation 6-21). Compare the results for the three cases.

Discuss when the linear geometric relations are valid and develop the

appropriate nonlinear elongation-displacement relations for the trusses shown.
Assume no support movements.

6-4.
(a)
(b)

(c)

Consider the truss shown:
Establish the connectivity table.
List the initial direction cosines. Do we have to include nonlinear
geometric terms for this truss? ’
Locate the nonzero submatrices in .o, using the connectivity table.
Determine the complete form of 7.
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i
i Let v; (j = 1,2,...,5) denote the potential at node j. Also, let ny and n_
! denote the nodes at the positive and negative ends of branch n. The potential
Prob. 6-3 Prob. 6-5
X ! 540, 1, 1)
2 XB

-

R L R

4
0,1,0

X2

o e

Prob. 6-6
X g :
1 , 0,
‘ €10
t
1 Ry @ @
O,
% - | © @
5 4
@ drop for branch n, indicated by e, is given by
Xy : : _
1 ' €y = Up_ — Up,
! We define v and e as
i v = {03, 03,..., s} = general node potential matrix
. e = {e, €3 ..., e} = general branch potential difference matrix
(d) Determine C. i and write the system of branch potential difference—node potential relations as
(e) Verify that of = aC. i
6-5. Determine o for the three-dimensional truss shown. .‘ e = .oy

6-6. Consider the d-c network shown. The junctions are generally called
nodes, and the line connecting two nodes is called a branch. The encircled

{ Determine 7, using the branch-node connectivity table. Discuss how the truss
numbers refer to the branches and the arrowheads indicate the positive sense f
|

problem differs from the electrical network problem with respect to the form
of o/. How many independent columns does 7 have? In network theory, o/

(of the current) for each branch. is called the augmented branch node incidence matrix.
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6-7. Take L = 20ft, 4 = 2 in? and the ¢-¢ curve shown.
(a) Develop the piecewise linear force-elongation relations.
(b) Suppose a force of +60 kips is applied and then removed. Determine
the force-elongation relation for the inelastic case.
{c) Suppose the bar experiences a temperature increase of 100° F. Deter-
mine the initial elongation. Consider the material to be aluminum.

. 67
o (ksi) Prob. 6

6 X 10% ksi

20 ksi —

10 X 10% ksi

e(in./in.)

6-8. Generalize Equation 6-32 for segment j. Start with
e=ef) + fOF

and express e§ in terms of quantities associated with segment (j — 1).

6-9. Generalize Equation 6-35 for segment j.

6-10. Suppose the stress-strain relation for initial loading is approximated,
as in the sketch, by

= E(e — bed)
Prob. 6-10
o ///
e
- E
E PR
1 -
-
04 |— P /1
o=FE'e
/4 do t
v de=F
// g
/ E
7
/1
/
/
/ 1 6

RpT———— -..1
1

"] 0 TR PNTEE. P el AN T

S

e . e e . R e e S
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(a) Determine expressions for E° and E', the secant and tangent moduli.

(b) Determine expressions for £° and &".

(c) Suppose the material behaves inelastically for decreasing |o|. Consider
the unloading curve to be parallel to the initial tangent. Determine the
force-elongation relation for AB.

6-11. Repeat Prob. 6-10, using the stress-strain relation

1 "
= E(G + clol)

where E, ¢, and n are constants.
6-12. For the accompanying sketch:

Prob. 6-12

(a) Locate the nonzero submatrices in 2.
{b) Assemble £ for the linear geometric case.
6-13. Repeat Prob. 6-12 for the three-dimensional truss shown

Prob. 6-13

X

6-14. Consider the electrical network of Prob. 6-6.

(a) Let i, be the current in branch n. The positive sense of i, is from node
n- to node n,. Now, the total current flowing into a node must equal
the total current flowing out of the node. This requirement leads to
one equation for each node involving the branch currents incident on
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the node. Let

i= {i}, i, ...,i;} = general branch-current matrix
Show that the complete system of node equations can be written as
. (5x1)
ATi= 0 ()

where 7 is given in Prob. 6-6.

(b) How many independent equations does (a) represent?
(Hint: < has only four independent columns).

(c) When the resistance is linear, the current and potential drop for a
branch are related by

en = eO,n + Rnin (b)

where e, , is the branch emf and R, is the branch resistance. An
alternate form is : )

in = Rn_ 1(en - eO,n)

Note the similarity between (b) and the linear elastic member force-
elongation relation. Show that the complete system of branch cur-
rent-node potential relations can be written as

e = v = () + Ri
. p-t _ R-1 -1 ©
i=R e —e)=R "e/v—R "¢
Equations (a) and (c) are the governing unpartitioned equations for a
linear-resistance d-c nctwork. The partitioned equations are developed
in Prob. 6-23. It should be noted that the network problem is one-
dimensional, that is, it does not involve gecometry. The &/ matrix
depends only on the topology (connectivity) of the system. Actually,
& corresponds to the C matrix used in Sec. 6-3 with i = 1.
6-15. Refer to Prob. 6—12. Suppose uy, Uy, 5, arc prescribed. Identify
B, and B,.
6-16. Refer to Prob. 6-12.
(a) Develop the general form of %’
(b) Suppose iy, Uy, U3, are prescribed. The orientation of the local
frame at joint 5 is shown in the sketch. Determine B, and B,.

Prob. 616
X2

Y5

30°

X
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6-17. Refer to Prob. 6-13
(a) Develop the general form of B. '
(b) Determine B, and B, corresponding to the following prescribed dis-
placements:
Uyy, Uy, Uszyg, Uzs, u%:&; Ups

The local frame at joint 2 is defined by the following direction cosine
table.
X X, X5
VST VN /S VN b 0
Y2 1/2 1/2 —14/2
V& 1/2 1/2 142
6-18. Consider the two-dimensional truss shown. The bars are of eq_ual
length and 0 is the center of the circumscribed circle. The restraint direction

is o degrees counterclockwisc from the tangent at each joint. Investigate the
initial stability of this system. Repeat for the case of four bars.

Prob. 6-18

— r {restraint direction)
«

t {tangent)

11::]2:13

6-19. Suppose n; = m. Then, B, is of order m x m. The equilibrium
equations for P, = 0 are
(mxm) {(mx1) mx1

B, F =0 (@)

If (a) has a nontrivial solution, the rank of By is less than m and the system is
initially unstable (see Prob. 1-45). Rather than operate on By, to determine
#(B,), we can proceed as follows: .

(1) We take the force in some bar, say bar k, equal to C:

F,=C
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(2) Using the joint force-equilibrium equations, we €xpress the remaining
bar forces in terms of C. _ . .
(3) The last equilibrium equation leads to an expression f_or Fy in terfms
of C. If this reduces to an identity, 1(By) < ng since a nontrivial solution for
i i is ce - d test.
F exists. This procedure is called the zero loa , B _
(a) Applypthis procedure to Prob. 6~}$. 'Take Fy = C and dete_rmmef
F,, F3, and then Fy using the equilibrium condition (summation 0O
2 3 o
forces normal to r must equal zcrp) for joints 1, ?,, 3. i
(b) Whenn, =m and the geometry is linear, the truss 1s said to be statically
determinate. In this case, we can determine F, using only the equgxtx_o_nsl
of static equilibrium, since the system, P, = B,F, is square. Do mmaf
elongations and support settlements introduce forces in the bars o
a statically determinate truss?
6-20. Modify the zero load test for the case where ny < m. Note that the
general solution of B;F = 0 involves m — r(B,) arbitrary constants. L
6-21. Investigate the initial stability of the two-dimensional truss shown.

Use the zero load test.

Prob. 621

®
l._———c————aF———C”-’\

6-22. Investigate the initial stability of the system shown. The restraint
directions are indicated by the slashed lines.

Prob. 622
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6-23. We generalize the results of Probs. 6—6.and 6—14 for a network
having b branches and n nodes. Let
e = branch potential diff. matrix = {ey, e5,..., ¢}
i = branch current matrix = {i, iy, ..., i}
v = node potential matrix = {vy, vy, ..., 0,}
The general relations are (1) node equations (n equations)
(nxb)y (bx1) (nx1)
ST i =0 (a)
and (2) branch equations (b equations) A
e = /v =e, + Ri (b)

Now, &{T has only n — 1 independent rows. One can easily show that the
rows of .o/ " are related by

n—1
rown = — ) rowk (©)

k=1
It follows that (a) rcpresents only n — 1 independent equations, and one
equation must be disregarded. Suppose we delete the last equation. This
corresponds to deleting the last column of s (last row of .o/ 7). We partition .2,

(bxn) bx(n—1) bx1
o <[ et | wt] A
and let ./, = A. The reduced system of node equations has the form
ATi=0 ©

Note that AT corresponds to B, for the truss problem.

Equation (e) represents (n — 1) equations. Since v is of order n, one of the
node potentials must be specified. That is, we can only determine the potential
difference for the nodes with respect to an arbitrary node. We have deleted
the last column of &/ which corresponds to node n. Therefore, we take v, as

the reference potential.
(a) Let
— Uy Vg = Upyev oy Upyeq — v,,}r
Show that
, v = AV
Summarize the governing equations for the network.
(b) The operation
oA = A
vV
corresponds to introducing displacement restraints in the truss pro-

blem. Compare the necessary number of restraints required for the
network and truss problems.



