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Restrained

Torsion-Flexure of
a Prismatic Member

13-1. INTRODUCTION

The engineering theory of prismatic members developed in Chapter 12 is
based on the assumption that the effect of variable warping of the cross section
on the normal and shearing stresses is negligible, i.c., the stress distributions
predicted by the St. Venant theory, which is valid only for constant warping
and no warping restraint at the ends, are used. We also assume the cross
section is rigid with respect to in-plane deformation. This leads to the result
that the cross section rwists about the shear center, a fixed point in the cross
section. Torsion and flexure are uncoupled when one works with the torsional
moment about the shear center rather than the centroid. The complete set of

Variable warping or warping restraint at the ends of the member leads to
additional normal and shearing stresses. Since the St. Venant normal stress
distribution satisfies the definition equations for Fi, My, M, identically, the
additional normal stress, ¢’, must be statically equivalent to Zero, Le., it must
satisfy

ffo', dd = {x20%, d4 = {fx307,d4 = 0 (13-1)

The St. Venant flexural shear flow distribution is obtained by applying the
engineering theory developed in Sec. 11-7. This distribution is statically equiva-
lent to F,, F 3 acting at the shear center. It follows that the additional shear
stresses, ¢, and o;, due to warping restraint must be statically equivalent
to only a torsional moment:

{fo',da =0
.Uais dA =0

To account for warping restraint, one must modify the torsion relations, We
will still assume the cross section is rigid with respect to in-plane deformation.

(13-2)
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372 RESTRAINED TORSION-FLEXURE OF PRISMATIC MEMBER CHAP. 13

In what follows, we develop the governing equations for restrained torsion.
We start by introducing displacement expansions and apply the principle of
virtual displacements to establish the force parameters and force-equilibrium
equations for the geometrically linear case. We discuss next two procedures
for establishing the force-displacement relations. The first method is a pure-
displacement approach, i.e., it takes the stresses as determined from the strain
{displacement) expansions. The second method is similar to what we employed
for the engineering theory. We introduce expansions for the stresses in terms
of the force parameters and apply the principle of virtual forces. This cor-
responds to a mixed formulation, since we are actually working with expansions
for both displacements and stresses. Solutions of the governing equations for
the linear mixed formulation are obtained and applied to thin-walled open and
closed cross sections. Finally, we derive the governing equations for geomet-
trically nonlinear restrained torsion.

13-2. DISPLACEMENT EXPANSIONS; EQUILIBRIUM EQUATIONS

The principle of virtual displacementst states that
[ffeT 6¢ d(vol) = [[fbT Aud(vol) + |[p” Au d(surface area) ()

is identically satisfied for arbitrary displacement, An, when the stresses (o) are
in cquilibrium with the applied body (b) and surface (p) forces. We obtain a
system of one-dimensional force-equilibrium equations by introducing expan-
sions for the displacements over the cross section i terms of one-dimensional
displacement parameters. This leads to force quantities consistent with the dis-
placement parameters chosen.

We use the-same notation as in Chapters 11, 12. The X, axis coincides with
the centroid; X,, X are principal inertia axes; and X,, ;3 are the coordinates
of the shear center. We assume the cross section is rigid with respect to in-plane
deformation, work with the translations of the shear center, and take the dis-
placement expansions (see Fig. 13-1) as

= Uy + WaXa — WXy + [
= Uy — wy(x3 — X3) (13-3)
il = gz + w1(x; — X;)

D B
=

)

9

where ¢ is a prescribed function of x,, x3, and— -

o

Uy, Ugy, Uz are the rigid body translations of the cross section.

2. wy, w3, w3 are the rigid body rotations of the cross section about the
shear center and the X,, X5 axes.

3. f is a parameter definining the warping of the cross section. The

variation over the cross section is defined by ¢.

Note that all seven parameters are functions only of x;. For pure torsion

+ See Sec. 10-6.

SEC. 13-2. DISPLACEMENT EXPANSIONS; EQUILIBRIUM EQUATIONS

(i, the St. Venant theory developed in Chapter 11), one sets f = w; ; = const
Snd ¢ = ¢,. For unrestrained variable torsion (i.e., the engineering theory
eveloped in Chapter 12), one sets J = 0. Since there are seven displacement

parameter_s', application of the principle of virtual displacements will result in
seven equilibrium equations.

X3

Ugs
T Shear center

T T T T e @ e Uy

&
—
=1
w

— X
wy

Centroid
Fig. 13—1. Notation for displacement measures.

The strain expansionst corresponding to (13-3) are
81 = Uy + 21X — w3, 1X + [
€ = &3 =Yy3 =0
Yiz = U — 03 — 0y (X3 —X3) + [,
Y13 = Uz + w2 + wy, (X, — Xy) + fé,3
Using (13~4), the left-hand side of (a) expands to
{IfoT g d(vol) = [, [F, Auy ¢ + FyAug, « — Aw;)
+ Fi(Aug ; + Aw,) + M, Aw, ; + M3 Aw; ,  (b)
+ MTACOI’I + M¢>Af,1 + MR Af]d.n
where the two additional force parameters are defined by
M,/, = J‘jglld) dA
Mg = H(Uu(b,z + 013, 3)dA

Note that M, has units of (force) (length)? i
. : gth)* and My has units of moment. T
quantity M, is called the bimoment. ‘ o The,

(13-4)

(13-5)

1 This derivation is restricted to linear ge

. ometry. The nonlir i i i
in Sec. 139, y near strain expansions are detived
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374 RESTRAINED TORSION-FLEXURE OF PRISMATIC MEMBER CHAP. 13

To reduce the right-hand side of (a), we refer the transverse loading to the
shear center. The additional load terms are

my = §p:¢ dS = distributed bimoment . (13-6)
My = {[pi¢ dA = external bimoment at an end section (x; = 0, L)

Then

{§fb” Au d(vol) + {{p” Au d(surface area)
= [[b1 Auy + by Augy + b3 Augg + iy A-cul + my Aw,
+ ms Aws + my Af]dx; + |Fy Buy + Fa Aug
+ Fs Augs + My Awy + My Awy + M3 Aws + My AMlei =0,

The definitions of b, m;, mr, F;, M;, M are the same as for the engineering
theIT()il;xya:]fy, we equate (b), (c) and require the relation to be satisﬁffd fqr arbitrgry
variations of the displacement parameters. This step in\{olves first mtegratmg
(b) by parts to climinate the derivatives and thfar} equatmg lhe coeflicients of
the displacement parameters. The resulting equilibrium equations and bound-
ary conditions are as follows:

(©)

Equilibrium Equations

Fi1+b =0
F2’1+bz=0
F3,1+b3=0

Mg+ mp =0
M2,1-F3+m‘2:0
M3,1+F2+m3::0
M¢,1—MR+mq,=0

Boundary Conditions at x; = 0 (13-7)

Uy = Iy or F, = —F,
Uy = U, OF Fy, = —F,

Uy = T3 or Fy= —F;

w; = Wy or MT = '—MT

Wy = @B or M, = —M,

w3 = @3 or My = —M,

f=r or My = —M,

Boundary Conditions at x; = L

These are the same as for x; = 0 with the minus sign replaced with a plus sign.

For example: _
f ::f or M¢ = +M¢
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We rgcognize the first six equations as the governing equations for the
engineering theory. The additional equation,

M¢’1”‘MR+H’1¢:O O<X1<L d

f=f or M¢:$M¢, x1 =0,L ()

is. due to warping restraint. Also, we see that one specifies either f or the
bimoment at the ends of the member. The condition f = 7 applies when the

f:nd cross section is restrained with respect to warping. If the end cross section
is free to warp, the boundary condition is My = + M, (+ for x; = L).

To interpret the equation relating My and the bimoment, we consider the
definition for My, ’

Mp = [{(612¢. 2 + 0136.3)dA (e
Integrating (¢) by parts leads to

Mg = $p1dp dS — [[dlo12,2 + 013,3)dA )
Utilizing the axial stress equilibrium equation,
O12,2 + 0133 + 011,1 =0 (8)
we can write
Mg = §p1dp dS + [fdoyy, ( dA (h)
= My + A/Idv,l :

We sce that (h) corresponds to the axial equilibrium equations weighted with
respect to ¢,

Io12,2 + 013,35 + 011, )P dA + §(py — 2012 — w3013 dS = 0
Y (¥
Md). 1 + m¢ —_ MR =
In most cases, there is no surface loading on S, i.e.,, p; = 0 on the cylindrical
boundary. We will discuss the determination of stresses in a later section. We
simply point out here that My involves only the additional shear stresses due

to warping restraint since the St. Venant shearing stresses correspond to
G111 = OT

13-3. FORCE-DISPLACEMENT RELATIONS—DISPLACEMENT MODEL

To establish the relation between force parameters and the displacement
parameters, we consider (13—4) to define the actual (as well as virtual) strain
distribution and apply the stress-strain relations. We also consider the material
to be isotropic and suppose there is no initial strain. The stress expansions are

o1y = Egey = Ec!f[ul,l + X3z, 1 — XoW3, 1 + f,1¢]
012 = Gyiz = Glug, 1 — w3 — o1, 1(x3 — X3) + f,2] (13-8)
Gyis = Glug, 1 + wa + 0, ((x2 — X2) + [, 3]

I

013

t Mg = M, = Ofor St. Venant (pure) torsion. We neglect My and M, for unrestrained variable
torsion.



376 RESTRAINED TORSION-FLEXURE OF PRISMATIC MEMBER CHAP. 13

where E.; denotes the effective modulus. Although our displacement expansions
correspond to plane strain (¢, = &3 = 0), the in-plane stresses vanish on the
boundary. Therefore, it seems more reasonable to use the extensional stress-
strain relations for plane stress. In what follows, we will take E; = Young’s
modulus, E.

Consider the expression for o,. The term involving ¢ is due to warping of
the cross section. This additional stress must satisfy (13—1), which, in turn,
requires ¢ to satisfy the following orthogonality conditions:T

[{p dA = [[x20p dA = [[xs dd = 0 (13-9)

Assuming (13-9) is satisfied, and noting that X,, X are principal centroidal
axes, the expressions for Fy, M, M3, and the M, reduce to:

F1 = EAU1.1
M, = El,w;, ¢

N 13~10
Mj = Elsws 4 ( )
M¢ = Er-’d;j:l

where
Iy = [[¢* da
We have included the subscript r on E to keep track of the normal stress due
to warping restraint. Inverting (13-10) and then substituting in the expression
for oy, lead to

= E i L 13-11
O11 A+12 3 13x2+1¢d) ( )
The expressions for F,, Fa, M, and My expand to
1 =
—G:Fz = Az, 1 — w3 + X301,1) + fS2
1
EF;; = A(Ms3y1 -4 Wy — fg())l‘ 1) -+ fS3
1 13-12
5M1=[1601,1 + f1y ( )
MT = M1 + X3F2 - :szig
1 Sz S3 ,
EMR = —GZFZ + Esz, + 14,&)1,1 + Id,f
where '
S; = [[e.;dA

I, = polar moment of inertia = I, + I,
Iy = [f(x2¢, 5 — X3¢, 5)d4

5 = @ + 974 — (53 + 5}

tF1 = M, = M; = 0 for ¢y, due to warping restraint.

SEC. 13-3. DISPLACEMENT MODEL 377

Also, the expressions for the shearing stresses can be written as

12_.*13+G ~X3wy,1 + f|¢ ;

3Wyg, 1 4 .2 A-
c (13-13)
13_1,§+G!x2(1)1,1 + f(¢~3 j)l

The essential step is the sclection of ¢ which, to this point,-must satisfy only
the orthogonality conditions (13-9). To gain some insight as to a suitable form
for ¢, let us reexamine the St. Venant theory of unrestrained torsion. We
suppose the section twists about an arbitrary point (x5, x3), instead .of about
the centroid as in Sec. 11-2. The displacement expansions are

iy = —wy(x; — X5) Iy = wy(x; ~ x5)
i = Wy, 19, (@)

where @, ; = M,/GJ = const. Operating on (a) leads to

Ty =

M
012 = "}i (2 ~ (x5 — x3)] (b)

M ’
33 = "']—1[(/)1,3 + (x5 — x3)]

The equation and boundary condition for ¢; follow from the axial equilibrium
cquation and boundary condition,

Vi = 0 n A4
9 e :
n %n2(X3 = X3) — atu3(xz ~ x3) onS§ (©
We can express ¢; as
@ = C ~ x3x; + xXhx3 + ¢, (d)

where C is also an arbitrary constant. The boundary condition and expressions
for the stresses become

o,
an = OnzX3 — Op3Xy
O3 = M’l“(ﬁb - X3) |
J £, 2 3 (e)

M
013 = ‘f*ﬁf’z,a + x3)

Since ¢, depends only on the cross section, it follows that the stress distribution
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and torsional constant are independent of the center of twist. Also, one can
showt that
: ”¢t,2 dA = ”‘f’:,s a4 =0 ()
—“(deb, 3 — X3y 2)dA = ”[(d)r 2)2 + (s, 3)2]d1‘1

Suppose we take ¢ = ¢;. The constants (C, x5, x5) are evaluated by requiring
$; to satisfy (13-9), and we obtain

C

i

!
~— i[9 dA

1
x5 = I jjxs(/)z dA (8
2
1
Xy = — H‘Xz(ﬁz dA
I3

Now, one can show] that the equations for x5, x4 are identical t.o the e‘quations
for the coordinates of the shear center when the cross section is conmdered‘ to
be rigid with respect to in-plane deformation. That is, the warping function
for unrestrained torsion about the shear center is orthogonal with respect to

19 X2, X3.
Summarizing, we have shown that

(f) = C — X3Xp + X2X3 + d); = ?C (13"‘14)

is a permissible warping function. The cross-sectional propert'ics and force-
displacement relations corresponding to this choice for ¢ are listed below:

Cross-Sectional Properties
S 2 = - X 3A

Iy=—1Is (13-15)
J=I +I,=1, -1

Iy = [[[(@n,2)* + (¢:,2)*]dA4

Sy = +X,4

Shear Stresses
F
G2 = 71% + G(—x301,1 + [P, 2)
(13-16)

F
013 = ,1_43 + G{xawy,1 + fr,3)

+ See Sec. 11-2 and Prob. 11-2.
t See Prob. 13-1.
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Force-Displacement Relations

MT = GI;COLI - GI:/;f + 5&:3F2 - ')ZZ,F3
Mg = GI{(f — w1,1) — X3F; + Xa2F;

F

S = w5 T — 1) (13-17)
F

a‘;— = Ug,  + 0 + Xf — w1, 1)

We introduce the assumption of negligible restraint against warping by
setting E, = 0. Then, M, = 0, and the seventh equilibrium equation reduces
to Mg = 0. Specializing (13-17) for this case, we obtain

. 1 .
/ — Wi, 1 =“—“(X3Fz-le’3)

GIj (13-18)
MT = GJ(J)L 1
and
' 4 v (13-19)

F2 Xzi:q F3 1 ?%
U, g = Wy + | = |+ == + =
3,1 = @2 G( 14,)+G A+1;;

The shearing stress distributions due to F,, F3 do not satisfy the stress boundary
condition

Up2012 + 0n3013 = 0 onS (a)

However, one can show that they satisfy
ff(()(,,z@'lz + O(nlio;l 3)dS =0 (b)

for arbitrary F,, F3. Equations (13-19) are similar in form to the results
obtained in Chapter 12, which werc based on shear stress expansions satisfying
(a) identically on the boundary.

Finally, we point out that torsion and flexure are uncoupled only when
warping restraint is neglected (E, = 0). Equations (13—17) show that restrained
torsion results in translation of the shear center. We will return to this point in
the next section.

13-4. SOLUTION FOR RESTRAINED TORSION—DISPLACEMENT
MODEL

To obtain an indication of the effect of warping restraint, we apply the
theory developed in the previous section to a cantilever member having a
rectangular cross section. (See Fig. 13-2). The left end (x, = 0) is fixed with
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: 1
Xy J_
4~ [~ 22—

Sect. A-A

X2

Fig. 13-2 Restrained torsion-cantilever with rectangular cross section.

respect to both rotation and warping while the right end (x; = L) is frec to
warp. The boundary conditions are
x; =0 wy =f=0 )
x;=L M =M (a
M ¢ = 0

i i restrai rsion:
For convenience, we list the governing equations for restrained to

Equilibrium Equations (See I3-7)) )
Ml,l + my = 0 ((C;
M R = M &, 1 + md,

) t
Force-Displacement Relations (See (I13-10) and (13-12). Note tha

Fz = F3 = 0)
M,y = Edyf 1 @
M, = Gliwy,s + Glyf '
Mz GI:,,CU;A + GI:{;f

i

Boundary Conditions (for this example)

Atx1:03 f.—_—a)1==0 (e)
AtX1=L7 Mle
fa=9

. . ¢

We start with (b). Integrating (b) and enforcing the boundary condition &

x, = Lleadsto - M (13-20
L=

|
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Next, we combine (c) and (d):

Gliw;, s + Gl f =M )
Glyw; 1+ + Gl f = Elf, (g
Solving (f) for wy, 4, . ' o
M I
Wy,1 = *G“I“l" - ’I“l‘f (h)

and then substituting in (g) lead to

I .
f’“—zzf:EI{_I‘ ) (1)
where 1 is defined as v
_ G (11)2
12 —— ]// _ -_j.)__g_ 3
Ji s (13-21)

Note that 72 has units of (1/length)®. The solution of (i) and (h) which satisfies
the boundary conditions () is (we drop the subscript on x for convenience)

;oM

iy S 7 7L sinh 1
T {1 — cosh Ax + tanh AL sinh Ax}

M Iy o - 1
Wy = G‘],{—Ex i [sinh Ax + (1 — cosh Ax)tanh ALJ} (13-22)

Iy )
Jl — ___III Yol
I:»[ T
The rate of decay of the exponential terms depends on 2. For AL > =~ 2.5,
we can take tanh AL = 1, and the solution reduces to

fzﬂ{l — e7"¥}

o 13-23
oo ML L (1329
R AN AT
As a point of interest, the St. Venant solution is
dw, M ]
I="a = e 0

We see that 1/7 is a measure of the length, L, of the interval in which warping
restraint is significant. We refer to Ly as the characteristic length or boundary
layer. By definition,

ez 0 (13-24)
In what follows, we shall take

L, ~ (13225)

>l A

The results obtained show that 7 is the key parameter. Now, 4 depepds on
the ratio G/E, and on terms derived from ¢, the assumed warping function. If
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ionf sstrained t
take ¢ = @i the warping function for unrestraine
€ 1a - t 1 8
‘(1344) the various coefficients ar¢ related oy
t

orsion defined by

Iy= 1 13-26)
J=1 - I (
Jo=1

o a rectangular section (see Fig. 13-2)

At this point, we restrict the discussion t (13-15) an 4 write

i 1 d by
yarious integrals define
and ¢ = ¢F. We evaluate the

the results as

J = K,a3b

I = +K§§a3b (13-27)
I, = K,a’b

Id) == K¢a3b3

KJ = K1 - K'II;

. . . . - 1 ~ . ]
/ * g
WhCIC the K s are dlrﬂellSlO]llﬁS& functlons Of b a w 1th these CflIll[lOnS the

expression for 7 takes the form .

1
Az »E' Kl};

) KKy
I\A = 'K1K¢ A n
is essentially
effcionts are tabulated in Table 1375 T 1 i 2I/<bl and Ly = 2b.
The Cot Assuming E =~ 726G and Ki ~ 3.2, we ind o of the order of the
ConSt'ar;i. née of warping restraint is confined to a reglo
The nfluenc

l‘eiﬂh l”[()”gh ”I €S tw (¥ (o] ]()Cta 1 ulal C 10 W Wu
1 g TOSS Sect n, iV 1

[ 18T ul as d rlved f ra p 0SS Se(;| 10118,

Sh() W 1aAt€I that 1t 1S typl(lcll Of Sohd dnd alsO thlﬂ" Wdued Cl()éed cr ns

(13-28)

Table 13-1
e —
Ky
b N K,
— KJ K¢ K‘ 23
a

336
205 0311 156
; 366 165 450 3‘1(;
S a1 283 083 3.22
o 409 425 964 33

. 1o the
blem of locating the center of twist. We utilize t

: i t the pro -
We consider nex P and large ZL:

M —_ sC
solution corresponding to o= &

M —7x
f=gsli-c }

M _ﬂ_{é_ 1 — e~'§.x)§
w1 =Ej‘{x 111(

reduces 10 Pdcenroid

(13-29)

T e Fa o= 0 113 ection and ¢(lshear center
3 or a rectang 1 S
TC = X3 X3 i

e L

g
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The translations of the shear center follow from (13-17):

v Usz, 1 = 73£f — W1,x) (13-30)
Uz, 1 = —Xalf — wy,5)

By definition, the translations are zero at the center of twist. Setting i, = 13 =

0 in (13-3) and letting x5, x5 denote the coordinates of the center of twist
lead to

o = t —_
X7 = (X3 X3 = (gX3

£=1__{§_ 1—e™
g II1 X

We see that the center of twist approaches the shear center as x increases. The
maximum difference occurs at x = 0 and the minimum at x = L.

(13-31)

oo = —— =1
gx=0 - B é,é = J
7
. (13-32)
Jlx=1 = o
k- 1_:{4’_
LI

For unrestrained warping, E, = 0,1 = o,and g = 1.

13—-5. FORCE-DISPLACEMENT RELATIONS—MIXED FORMULATION

We first review bricfly the basic variational principles for the three-dimen-
sional formulation. The principle of virtual displacements requires

{{Jo™ 0g d(vol) = f[{bT Aud(vol) + [fp" Aud(surface area)  (a)

to be satisfied for arbitrary Au and leads to the stress-equilibrium equations
and stress-boundary force relations. Note that g is a function of Au and is

obtained using the strain-displacement rclations. The stress-strain relations
can be represented as

el b6 = SV* . (b
since, by definition of the complementary energy density,
‘ av* ov*
&) = dor yi(0) = Gou ©

By combining (a) and (b), we obtain a variational principle which leads to both
sets of equations. The stationary requirement,

S[[[f(c"e — b"u — V*)d(vol) — [[p"u d(surface area)] = 0 (13-33)
considering o, u as independent quantities, € = g(u), and P, b prescribed, is
called Reissner’s principle.t

t See Ref. 11 and Prob. 10-28. Reissner’s principle applies for arbitrary geometry and elastic
material. This discussion is restricted to linear geometry. The nonlinear case is treated in Sec. 13-9.
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The essential point to recognize is that Reissner’s principle allows one to
work with ¢ and u as independent quantities. In a displacement formulation
(Sec. 13-3), we take ¢ as a function of u, using the stress-displacement relations
¢ = D& = ofu), and 6’ — V* reduces to V, the strain-energy density. In a
mixed formulation we start by introducing expansions for the displacements.

The Euler equations for the displacement parameters are obtained by ex-
panding (a). This step leads to the definition of force parameters and force-
equilibrium equations. We then generate expansions for the stresses in terms
of the force-parameters from an equilibrium consideration. The relations
between the force and displacement parameters are obtained from the second
stationary requirement:

§x [[f(e" 66 — 6V*)dA]dx, = 0 (13-34)

. Thefirst step was carried out in Sec. 132 and the expanded form of | 6¢"o dA
is given by (b) of Sec. 13-2. Letting V* represent the complementary energy
per unit length along X, and using (13-4), the stationary requirement on the
stresses (Equation 13-34) expands to

5F1ul’1 + 5F2(u32,1 g (,03) + (SF3(US3'1 + wz) + (SMzCOZ‘ 1
+ 5M360311 + 5MT(UI,1 + 5M¢f,1 -+ 51\’11(](. - (317* =0

In order to proceed further, we must express ¥* in terms of the force parameters
(Fy, Fy, ..., Mg). Equating the coefficients of each force variation to zero
results in the force-displacement relations.

Instead of applying (13-34), one can also obtain (13-35) by applying the
principle of virtual forces to a differential element. We followed this approach
in Chapter 12 and, since it is of interest, we outline the additional steps required
for restrained torsion. One starts with (see Fig. 13-3)

oV*dx; =) d; 6P, = [f{u” opdA],, + [[fu” op dA]., +ux, ()
The boundary forces are the stress components acting on the end faces. Taking
u according to (13-3) and considering only My, M, Mg, we have
{fopTudA = +[f d6™udA
= +(OMrw; + M, f)
where the plus sign applies for a positive face. The virtual-force system must

be statically permissible, i.e., it must satisfy the one-dimensional equilibrium
equations. This requires

(13-35)

i

(b)

oMy = const
d _ ©
R(él‘/ld)) = 5MR
Then,
d .
). di 0P; = dx; {f,x oM, + fE;éM(ﬁ + wy, 1 5MT} @

= dxl{f'l 5M¢ ‘f‘f&MR + O)I,I(SN[T}
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.13—34)) Is more convenient since it avoids
ions. However, one has to have the strain-
cases, e.g.,, a curved member, it is relatively

My
—6M, My + M4 ydx
Xy
wy Wy +wy rdx;
f S+ Fudx

Fig. 13--3. Virtual force system.

Cg;}é itt(;o(;lsgz:bllsg ftfhc foFcle-ethbrlum equations by applying the equilibrium

O a difierential element. We obtain the f; i

by apphying (he. Her - weobtam the lorce-displacement relations
‘ nd procedure (principle i g i i

to introduce strain expansions.t ® ple of Vlml&! forces) without having
In wha >onsi i

— i:ﬁ ri(t) It;ci)ilog/‘s, we col{}31der the material to be homogeneous linearly elastic

- 10 simphy the treatment, we also s ore { i
_Isotropi suppose s iti
Strain. The complementary energy densit},/ is ppose tiete is no intial

- 1 1
| 2 — 2
55 ”011 da + 2(}f (07, + oi3)d4

It remains to introduce expansions for t
forcF: parameters such that the
are identically satisfied.

Consxdermg first the normal stress, we can write ]

(13-36)

or he stres§ components in terms of the
definition equations for the force parameters

Fi M, M M
f M My M,
AT TR @)

3

where ¢ satisfies the orthogonality conditions: §

[¢ 44 = x2¢ da = [y da = (b)

Note that we have im
due to ¢y, expands to

. 1 1;'2 MZ M2 2
s = 55 (“i + 22y LM
224" T )T, ©

ased L . .
b on the principle of virtual forces is not applicable for the geometrically

posed a restriction on ¢. The complementary energy -

+ The approach b
nonlinear case,
¥ 5_‘-"“‘ (13-11). Problem 13-8 trea

: ts the case of a non i
R P g homogeneous material.

due to warping restraint.
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Finally, substituting for (¥*),, in (13-35), we obtain

wooo B M
4,1 = AE 2,1 EIZ (d)
M3 Mff’

w3, 1 :E‘I; f,l :E::I;

These expansions coincide with the corresponding relations obtained with the
displacement model (see (13~10)).

The shearing stress distribution must satisfy the definition equations for
F,, F3, Mg and My identically. We can obtain suitable expansions by adding
a term due to warping restraint to the results for unrestrained torsion and
flexure. We write

gyj = (T{j + 0“1‘1' + O"ij (13-37)
where ¢f; is the flexural distribution due to F,, F3; oY, is the unrestrained
torsion distribution; and ¢1; is the distribution due to restrained torsion.

Since we are assuming no in-plane deformation, the flexural distribution for
a thin-walled section can be obtained by applying the engineering theory
developed in Sec. 11-7. For a solid section, we utilize the results of Sec. 11-5,
taking v = 0.

- The shear stress distribution for unrestrained torsion is treated in Secs. 11-2
through 11-4. Since the restrained-torsion distribution is statically equivalent
to a torsional moment, we have to distinguish betwcen the unrestrained and
restrained torsional moments:

My = M + My
of; = f(M%)
oy = g(M¥)

It remains to determine o, We follow the same approach as in the engi-

neering theory of flexural shear stress, i.e, we utilize the axial cquilibrium
equations and stress boundary condition:

(13-38)

O12,2 + 013,3 = —031,1 in A (a)
02012 + Uy3Gy3 = 0 on s

Differentiating the expression for ¢,; and noting the equilibrium equations,

we obtain
F, Fy Mg
o =—"X; + X3 + —— b
e N AR (b
Since ¢/ satisfies (a) for arbitrary F,, F3 and ¢" corresponds to oy, = 0, it
follows that ¢” is due to My:

Mg b (in 4)
1,

Ap2072 + On3073 =0 (on 5)

i

0"12,2 + 0'33.3 (‘13-—}9)
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The or it iti
thogonality conditions on ¢ and boundary condition on ¢” ensure thatt

Fy = {lo,d4 = 0 Fy = {joi3d4 =0 (13-40)
We solve (13-39) and then evaluate M% from |
. My = “[—{xa ~ Xa)ols + (x5 — X2)o'3]dA (©
Noting (13-40), we see that My = M. Finally, we write {c) as |
M7 = +CyMp (13-41)

wher . . .
1ere Cy is a cross-sectional property which depends on ¢. With this definition

MT = Mlzl‘ + C([lj‘/IR

{13-42)
When the cross section is thin-walled, we neglect ¢,

and (a) reduces to
Tis,s = — 01y, .
ois=0. ata free edge - (d)

We take ¢ and 7, to be o .
. s ¢ constant over the thickness ¢ and i
flow ¢ = ¢%.t. Equation (d) becomes work with the shear
. M
Gl = =" gt
@ (13-43)
at a free edge

The orthogonality condit; iti
y lons on ¢ and boundary condition on ¢" ensure that

r

¢ =0

Fy = Jogmg" dS = 0

Fy = foaq" dS = 0 (13-44)

Finally, we determine Cy by evaluating M, and equating to (13-41)

We consider next the co
mplementary energy densit i
form of the shear contribution as ¥ J Wewndte the erpanded

7*1 = *‘1" [( { 1 12)?
shear = 57 Oi2 + 012 + 01,)* + (o5 + 0¥, + 7%3)*]dA
T ~ ~ 13-45
= V¥ 4 V3 VTR + T T ( Y

We have evaluated V% V¥ and V¥ in Sec. 11-5. For ¢
results are summarized below (See Equation 11-98)

2
= (B 200 )

onvenience, these

2G Az A23 A3

sy (MY
VE= 0

2GJ : @
Py — o

T See Prob. 13-2.



388 RESTRAINED TORS!ON—FLEXURE OF PRISMATIC MEMBER CHAP. 13
ishes when the section has an axis of symmetry.
tion is rigid with

The coupling term, 1 [A,3, van
of our assuming the cross sec

Also 7% = 0 is a consequence
respect to in-plane deformation.
We evaluate V¥, using (13-39) ((1

the results as

3-43) for the thin-walled case), and write

1 C

7 = 1 H [(0h,)? + (197 1dA = 55 - M? (13-46)

2G

where C,is a dimensionless fa
The coupling between unres

— 1 - o CY(Y ;
Vi == jj‘ {02012 + 0%3013)dA = I MTtMg (13-47)

ctor which depends on ¢.
trained and restrained torsion is expressed as

G

= 0 for a thin-walled open section since ¢” 18 an odd
o is constant over the. thickness. We will show later
ke C,, vanish for a closed section by specializing the
f (13-43). Therefore, in what follows, we will take

It is obvious that Cur
function of n whereas
that it is possible to ma
homogeneous solution ©

Cp =0 ,
Finally, we write the coupling between flexural

— 1 :
V?r = 6 jj\ (G{z(f’iz + 0{3‘7)13)d’4

and restrained torsion as

(13-48)

1
= —— (x5, F2M + x5, F3 M

GJ( 3t 2R 2rd 3 R)
X, is an axis of symmetry, Xar = 0 since o”
{ with respect to the X, axis.
with M% + C,Mpy, and equate
he resulting force-displacement

where x;, have units of length. 1f
is symmetrical and ¢ is antisymmetrica

We substitute for ¥* in (13-35), replace My
the coefficients of 6I 2, SF, 8MY, and Mg T

relations are
1 F2 F3 X3y
— = e | —— =M
sz, 1 w3 G <A2 + o + 7 R

) _ 1 F2 F3 Xor
Uz, 1 + W2 = E(Zw 4 +7 MR>
My
W11 = ey

(13-49)

G 1 )

Cqb(nl. 1 + f == —('i]“ MR + Ej (X37P2 -+ .‘Cz,'F:;)

model are given by (13-12).
the orthogonality relations
oupling between ¢* and

The corresponding relations for the displacement

Up to this point, we have required ¢ to satisfy
and also determined ¢” such that there is no energy ©
¢ (Cy = 0)- If, in addition, we take

g = —(C—%sxat $ox3 + @) = —OF

SEC. 13~
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thent
Cp=+1
er = +]VIR
Note that ¢7° i i i
t ¢ is the warping function for unrestrained torsion about the shear

center. We discuss the determinati i
tion of ¢ in Secs. 13~7 -
One neglects shear deformations due to flexure by setti:;d s

(13-50)

‘L = _1._ — 1
Yl Nl Il (13-51)

S“nﬂally, we Ileglect Sheal dCfO] mation due to Iestlalned torsion by Settnl
g

C,. = Xpp = X3, = 0
. | 3 (13-52)
his assumption leads to the center of twist coinciding with the shear center and
an
= —Cywy, 1 (13-53)

One 3 i
now has to determine MY% from the equilibrium relation
If M'} = Md,‘1 ~+ TN¢ (a)
u 41 ’
M is known, it is more convenient to work with
M%7 = My — Mt (b)

In what foll . ; :

fist results forov\Z?i g\;(i;l;lcllr]l; the ;c;]utkllon procedure for restrained torsion and
: s. Wet fseucs the L

closed cross section. & en discuss the application to open and

13-6.
SOLUTION FOR RESTRAINED TORSION—MIXED FORMULATION

We suppose only ftorsi i

. < y torsional loading is applied i A

e suppase 1 pplied. The force-displacemen -

e Fofér;i(i b}_/ se‘ttmg F,, F3, W3, 3 equal to zero anpd Cy = EI-rldf’n
cnience, we summarize the governing equations below

Lguilibrium Equations

My i + mp =0 |
M7 =M, égi
Force-Displacement Relations (¢ = — ¢ )
Md; = Erlq‘).f: 1

‘M’;' = ()"-](1)1E 1
. GJ c
o= Do) ©

»

£ S — . H
i See Prob. 13-3. We include the minus sign so that C will be positive
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390 RESTRAINED TORSION-
Boundary Conditions
My .ot wl} prescribed at each end (@)
M, ot f ~

Tyanslations of the Shear Center
MEL , = X (©)
ule"—C:?]M Msz,x—-GJMI
We start by integrating (a):
MT = Cl - 57?1[' (IYI = C1 + Mrp

3-54) leads to the governing equations for m, and f:

(13~54)

Substituting (c) in (b) and (1
1+ Co+[= G_; (Cy + Mrp) 0
CEIsf 11— GJlwy, 1 + ) = 0

After some manipulation, (f) becomes

X
or= =Gyt GT

S — 2f =E%(C1 + My,

where A2 is defined ast 1

=G (13-55)
c. 5.
§ E'-I(ﬁ

Cs =
)LZ =

Sec. 13-4.
Equation (g) corresponds to (h), (@) of ' .
the gen(eral solution for f and ; has the following form:

L Cy f
f = C;cosh Ax + C,4 sinh Ax — e + fp
¢ ! (13-56)
Wy = G.II x + Cz GJ j‘MT‘H
Cs dfy

- M(C sinh ix + Cq cosh Ax) = 75

: _
where f, is the particular solution due to My, Wehave dropped the subscrip

on x, for convenience.

acement-model formulation is 7 (see (13-21))-

1 The corresponding paramater for the displ
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The significance of 4 has been discussed in Sec. 13—-4. We should expect,
on the basis of the results obtained there, that AL will be large with respect
to unity for a closed section. We will return to the evaluation of A in the next
section. In the examples below, we list for future reference the solution for
various loading and boundary conditions.

Example 13-1

Cantilever—Concentrated Moment

Fig. E13-1

X;——*‘»M

7 £ |
The boundary conditions (Fig. E{13-1) are
=0 wy=/=90

= [ Mpy=M (a)
f.x =0

Starting with (13-54), we set My, = 0 and C, = M. The remaining constants are deter-
mined from

wy=f=0 atx=0

fe=0 atx = L ®)
and the final solution ist
;= M | cosh/(L ~ X)
T GJ cosh AL
M L
=7 [ yl coéh T {sinh AL — sinh A(L — x)}:}
(13-57)
My, =M -
My = [l poe h T sinh A(L x)]
=M [1-— ¢, SOSh AL = x)}
cosh AL
My =M — M4

+ The unrespondmg solution based on the dlsplacemcnt model is given by (13-22), (13-26).
The expressions for f differ by a minus sign. This is due to our choice of ¢. We took ¢ = ¢
in the displacement model and ¢ = —¢:° in the mixed model.
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Note that C, = 1 when the complementary energy term due to the restrained torsion
shear stress {0”) is neglected.
The translations of the shear center are obtained by integrating

L V12 22 (©)
x = U3, x = —
2 = 6T *3 GJ "

and requiring u;, us3 to vanish at x = 0. We write the result as
Usr = X3, U Usz = Xzl

13-58
L/—JM1dx_—~—-x—u)1 ( )

Let x, u} denote the coordinates and translations of the center of twist. By definition,

Uy = Uy — wy1(x5 — X3) =0 d
Uy = Uy + wy(xy — ) =0

Substituting for u,; and wy, we obtaint

g=—1+ : (13-59)

- [smh AL — sinh AL — x)]
J cost

The limiting values of g occur at x = 0, L.

1
g'.\'=0 == 1
-1+ a
: (13-60)
e
7T Cotanh AL

Note that x; = 0 if X, (j # k) is an axis of symmetry for the cross section. Also, x5, =
x3, = 0 if we neglect shear deformation due to the restrained shear stress and, in this
case, the center of twist coincides with the shear center throughout the length.

Example 13-2

We consider next the case where warping is restrained at hoth ends; the left end (x = 0)
is fixed and the right end rotates a specified amount w under the action of a torsional
moment. The boundary conditions are

(a)
f=0 (b)

~
i

= wy =

S

= y =

T See (13-31), (13—-32) for the displacement model solution.

i There is no twist or translation at x = 0. We determine ¢(0) by applving L'HGspital's rule

to (13~59).

SEC. 13-6. RESTRAINED TORSION—MIXED FORMULATION 393

To simplify the analysis, we suppose there is no distributed load. Starting with the

_ general solution,

.IM’[’ = Cl
- e
S = Cscosh ix + C,sinh jix — —L
GJ (c)
Cix C .
w, = Yerl + C, — 5 {Cs sinh Ax + C, cosh Ax}
and enforcing the boundary conditions leads to the following relations:
C, 1—c¢
C =t Q=Q(S?
¢ = cosh AL s = sinh AL
Cz = "C54C4
A
C.L 21— ¢
a@*x[s B=w
<y 1 -
f= J-{cosh Ax + ( )smh Ax — 1}
K (13-61)
o Cl/l-¢
Wy = TRk X + Tl (I — cosh Ax) — sinh /lx:l}
Mr=C =M

M4 = C, {1 el [cosh ix + (Llc-) sinh ),xj}}
S

A/IPT=MT"M"T

X C -
My = EJ, )| =~} {sinh ix + Lo cosh Ax
GJ N

We write the relation between the end rotation, w, and the end moment M. as

w = M[
(‘1 “elf

I

where L, denotes the effective length:

Ly = L[l _2 (Ell)]
AL\ s (13-62)

= Ll - C,C;)

The following table shows the variation of C - with AL, For /L > 4, C, ~ 2/AL. Note
that C; = 1 if transverse shear deformation due to restrained torsion is neglected.

LG

0.5 098
1 924
2 7%
360
4 48
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Example 13-3

Uniform Distributed Moment-S ymmetrical Supports

The general solution for mr = constant (we let my = m for convenience) 1s:

My =C, — mx
Cs Cy . . . C, mx
== Ax + — sinh Ax — — + =
f= LCOShA)C+ Lsmh/x ai T

(a)
Cy m (x>  C C, . .
= T I8Y - 22y sinh Ax + C,4 cosh AX)
o1 =gpx TG GJ<2+/Z2 1 s
We consider the boundary conditions to be identical at both ends and measure x from the
midpoint (Fig. E13-3). Symmetry requires

MT_ =0 atx =0 (b)
f=0
and (a) reduces to
My = —mx
C . m
f= —Lf sinh Ax + 2= x (13-63)
m (x> C) CCs . .
wy = Cz - E;‘:f {“2‘ + :5} - TE‘ cosh 4x

We treat first the case where the end section is fixed with respect to both rotation and
warping. Requiring (13-63) to satisfy '

feoi=0 atx=L2 @
results in
1
f= -G’% {.\' -5 sinh )x}
mL2 1 X 2 CS N }
ML ———{(cosh 7.x — ¢
o1 = o {8[1 4<L> ] + ZSAL(COS /x =)
My = —mx
. (13-64)
My = mL {— Z 4+ f sinh bc}
AL ;
M, = '_7:_55 {1 — iz; cosh Ax}

AL LA
¢ = cosh 5 s = sinh 5

The solution represents an upper bound. A lower bound is obtained by allowing the
section to wrap, i.e., by taking .
wy=fx=0 atx = (b)
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X ‘ Fig. E13-3
Z%—L» b o e Emas e ——-T-» L Xl P U—"ZL
IF L2 A{- L2 Q{

and the result is

mL? (1 x\? C,
wy = T {_8_ [1 — 4 <f,) } L E(-IF (cosh Ax — c)}

MT = —mx
c (13-65)
M'} =m {__x + =2 sinh /l.\'}
Ac
u C, ’ cosh Ax
= K- - -
5 = M 7 P
2L
+ = cosh ——
[& Cos! 5

13-7. APPLICATION TO THIN-WALLED OPEN CROSS SECTIONS

In what follows, we apply the mixed formulation theory to a wide flange
section and also to a channel section. We first determine the cross-sectional
properties corresponding to ¢ = — ¢ and then obtain general expressions for
the stresses in terms of dimensionless geometric parameters. Before discussing
the individual scctions, we briefly outline the procedure for an arbitrary section.

Consider the arbitrary segment shown in Fig. 13—4. We select a positive
sense for S and an arbitrary origin (point P). The unrestrained torsion warping
function is obtained by applying (11-29) to the centerline curve and requiring
the section to rotate about the shear center.

u Ml( a
Ullls'ccmerline = %‘ = ‘72 (Psc + E’S.‘ <f>f°) (13—66)

where p is positive when translation in the + S direction rotates the position
vector about the 4+ X, direction. The unrestrained torsional shear flow is zero

+ By definition, k; = MY%/GJ. We work with ¢ rather than y4, to facilitate treatment of closed
and mixed sections where one generates ¢* in terms of M-/J.
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for an open section. Then, taking ¢ = —¢;° and integrating leads to
S
b =dpt]| peds (13-67)
P

Note that one can select the sense of S arbitrarily. Also, ¢ varies linearly with
S when the segment is straight. The constant ¢p is evaluated by enforcing the
orthogonality condition (¢%; — F; = 0),

[¢tdS =0 ()

If the section has an axis of symmetry, ¢p = 0, if we take P on the symmetry
axis. The remaining orthogonality conditions (¢}; — M, = M; = 0),

are identically satisfied by definition of the shear center.}

X3

Shear center

X2

Fig. 13—4. Notation for determination of the warping function.

When the section has branches, we apply (13-67) to each branch. One has
only to require continuity of ¢ at the junction point. As an illustration, consider
the section shown in Fig. 13-5. The distribution of ¢ for the three branches is
given by

A=B  ¢=dp+[$pedS
B—C =5+ [SpdS ©
B—D =+ [§pecdS

We are taking the origin at B for branches B — C and B — D.

T See Prob. 13~1.
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The shear flow due to MY% is obtained by integrating (13—43) and noting
(13-50). Forconvenience, we let '

q§ = -7 (13-68)

With this notation, the resulting expression simplifies to
s .
T=q+ LP $rdS =3 + 0, (13-69)

We start at a free edge and work inward. A +g¢ points in the +§ direction
(see Fig. 13-5). Then, a + " corresponds to —¢', ie. ¢" acting in the —S
direction. If the section has an axis of symmetry, ¢ is an odd function with
respect to the axis and §" is an even function.

X3

X
Fig. 13-5. Example of a section with branches.
Once ¢ and §" are known, we can evaluate I, and C, with (13-10), (13-46):
I, = {[p? dA = [¢*tdS
o J £ ¥
C = MEJ [(652)* + (673)°}dA
J ds

o — G2
2 @)

(13-70)

In order to evaluate x,,, x1,, we need the flexural shear stress distributions.
We let ¢ be the distribution due to F; and write

q(J) = q()) (13_71)
I :
j=2 k=3
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The coupling terms are defined by (13-48), which reduces to

Jqfqr ’d;S“ = sz\/lr’r X3p + st,er X2¢ (a)
for a thin-walled section with ¢ = —¢i°. Substituting for ¢" and ¢’ results in
Xop = TZJ—L; 5'27(3)(1—8 1372

_J 2 48

X3p = I3Id>,( q4q e

If X, is an axis of symmetry, §" is an even function of x3, 3 is an odd function,
and x;, = 0. By analogy, x,, = 0 if X3 is an axis of symmetry.

The definition equations for C,, I, X2,, and x3, apply for an arbitrary thin-
walled section. When the section is closed, we have only to modify the equa-
tions for ¢, ', and g¥. We will discuss this further in the next section.

Example 13-4

Symmetrical I Section

The I section shown (Fig. E13-4A) has two axes of symfnetry; it follows that the shear
center coincides with the centroid and the warping function is odd with respect to X 5, X5.

Fig. E13-4A
X3 .
¢
S - A
- | ]
h X2
S - [
g ]
s
| .
1 b |
Applying (13—-67), we obtain .
¢ =0 for web
(a)

I
¢ = %S for flange

Note that the sense of S is reversed for the bottom flange.
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The shear flow vanishes at § = +5/2. Applying (13-69) and starting from pt. 4, we find

. s b?ht 25\2
g = tdS = — )1 - [Z2
NGRS N ®

The distributions of ¢ and ¢" are shown in Fig. E13-4B, where the arrows indicate the
sense of ¢" for + M.

Fig. E13-4B
b2ht (M'T)
s \7,
bh —<
+ P AN

\./A +My

J_\__J\v\*h ===

Plot of ¢ Plot of "

We express the cross-sectional properties in terms of b, ¢, and a shape factor £:

¢ = b/h
="
= <)
th®
lo =28 ©

The dix_nensipnless parameters occurring in the solution of the differential equations
for the mixed formulations are C, and AL {see (13-55)). Using (c) and assuming a value
of 1/3 for Poisson’s ratio, we write

301 + 252
Cy=—

Nz {d)
L4g @ _

AL =

|
e
™~
91
N
e
N’
N
B
N’



400 RESTRAINED TORSION-FLEXURE OF PRISMATIC MEMBER CHAP. 13

The coefficients &, ¢, are tabulated below:

<=7 & &2

1 24 3
0.75 2.66 422
0.50 32 6.93

Since (t/h)* « 1and &, ~ 0(1), we see that C; ~ 1. The warping parameter, 2L, depends
on t/has well as L/h. This is the essential difference between open and closed cross sections.
For the solid section, we found that AL = O(L/h) and, since L/h is generally large in com-
parison to unity, the influence of restrained warping is localized. ¥ The value of AL for an
open section is O(L//1) 0(¢/) and the effect of warping restraint is no longer confined to a
region on the order of the depth at the end but extends further into the interior. ‘

We consider next the determination of the stresses due to restrained warping. The
general expressions are :

M
o ==t
é
. q" (e)
O1s = =

Using the distribution for ¢ and ¢" shown above, the maximum values of normal and shear
stress are

, 6
105 1 man = Z@MV}

» 3 " (f)
!‘7 lslmnx = Eﬁ;‘f T

The shearing stress due to unrestrained torsion is obtained from

u M‘;‘ t 3 Mll
e = —~— = —————
A Y ©
To gain some insight as to the relative magnitude of the various stresses, we consider
a member fully restrained at one end and subjected to a torsional moment M at the other
end. This problem is solved in Example 13-1. The maximum values of the moments are

tanh AL
M = —MLC, ——"=
lmax AL atx =0 (h)

T lmax = CsM

1

We substitute for the moments in (f), (g) and write the results in terms of o3, the maximum

+ We defined the boundary layer length, L;, (see (13-24). (13-25)) as
L, 4

P T .

L L
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shear stress for unrestrained torsion:
[05 1| = (£3CL tanh AL)o%,

[0l = (acs (})) ot Q)

_ Mt
S J
& = 38 Ea = §(&)?

The variation of these coefficients with b/k is shown below:

o

0.75 2.11 1.67
0.50 231 2

Since C;, ¢5. and &, are of 0(1), it follows that
[0 1]m = O,
: t ()
lo-tlslm = 0(0;:1)
h
The additional shearing stress (s4,) is small in comparison to the unrestrained value.
Therefore, it is rcasonable to neglect the terms in the complementary energy density due

to o', i.e, to take C, = Oand C, = 1 for an open section. We will show in the next section
that this assumption is not valid for a closed section.

Example 13-5

Channel Section

We consider next the channel section shown in Fig. EI3-5A. Since X, is an axis of
symmetry, X3 = x3, = 0. The expressions for the location of the centroid, shear center,

X »Fig. E13-5A
N
G = |
|

Shear o ey T

center t
\LD_
Q7

SL | S«——{
]
s——

T
@L

A



402 RESTRAINED TORSION-FLEXURE OF PRISMATIC MEMBER CHAP. 13

and I, are

th? (a)

b
¢= h

1.00 0.429
0.75 0.409
0.50 0.375

We determine ¢ by applying (13-67) to the three segments. Taking S as indicated above,
and noting that ¢ is odd with respect to X ,, we obtain:

Segment 1-2

Psc = _'i)'
bh _ S (b)
Segment 2-3
Pse = +€

bh( ZS)_
¢ =—=—-1+--]2
2 h

The distribution is plotted in Fig. E13-5B. Since @ << 1/2, the maximum value of ¢ occurs
at point | (and 4).

We generate next the distribution of g, starting at point 1 (since ¢ = 0 at that point)
and using (b):

Segment 1-2

— S bht _ 18?

Y +bht’é p S?
q9=1\4q ) 5 +-h‘

The distribution of ¢” is plotted in Fig. E13--5C.

Segment 2-3

SEC. 13-7. APPLICATION TO THIN-WALLED OPEN CROSS SECTIONS 403
+e r\ Fig. E13-5B
N —{1 - E)
s<l
e<y
—e
T~J+u-29
Distribution of ¢/b21,z

Fig. E13-5C

O [\

=

NP P
M

1 D)

e

o QIQCD

2
Distribution of q’/ bh’t

Dy =¢(3-e)r

The expressions for J, 1, C,, C; and AL are written in the same form as for the previous
example:

J = ht? (Lj:—zé = ht3¢;

/2 43¢
I =]5{E_ A I P
e = [12(1+65)] htcs

o (Y f 200 + 162 + 4222 + 3683 (12
T\ =7 e () ¢ @
5842 + 39 h ‘
=t
1+ C.

AL =

—

G_&:J’l!l t L ) i i)
'EEJ (h) </> =G (,) (;)
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The following table shows the variation of ¢; and ¢, with b/h fpr G/E, = 3/8: i.., Poisson’s
ratio equal to 1/3. Note that the comments made for the wide-flange section also apply

to the channel section.

1 Q2

ey

=) o

=

1 233 2.55
0.75 2.65 339
0.50 34 5.24

In order to evaluate x»,, we need the flexural shear stress distribution due to F3. Applying
(11-106) leads to

Segment 1-2

ht
3 = .8
4 2

Segment 2-3 (e)

7o = _92@{ - iz-‘(h -~ S)

The distribution is plotted in Fig. E13-5D; the arrows indicatc the sense of g for a +F3.

Fig. E13-5D

~(1+4%

e
Distribution of q(j)/bv%—t
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Substituting for g, ), and the cross-sectional constants in (13~72) leads to

r t 2
Xap = —b&s n

_ (1 +28(-02 + 5E2 4 6EYH

& el

0+ 62 + 38

]

The coefficient is of order unity, as the following table shows:

¢ ¢
1 0926
05  1.03

In Example 131, we determined expressions for the coordinates of the center of twist
in terms of x;, and C;. It is of interest to evaluate these expressions for this cross section.
The coordinates at x = 0 (sec (13-59), (13-60)) are

x5 =0
xh = X; — X2 ]gle=0 (8
1
Mx:o = "T:—f
G
Substituting for C, x,,, and evaluating X,
é 3¢
o= ~A+ = —phl e b e T = E4b
=@ +e (1 T2 1 65) b ®
we obtain
xz = %l ~ &5) (D
oo S3 ‘ :
TR g
Typical values arc listed below:
e & &s

1 0.476 0.836
0.5 0.625 0.485

13-8. APPLICATION TO THIN-WALLED CLOSED CROSS SECTIONS

We treat first a single closed cell and then generalize the procedure for multi-
cell sections. Consider the section shown in Fig. 13—6. The + 8 direction is
from X, toward X; (corresponding to a rotation about the + X direction),
Using the results developed in Sec. 11-4, the shear flow for unrestrained tor-
sion is " o4

u T
¢=7Fc <= E#ars (@)

¢
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where A is the area enclosed by the centerline curve. The shearing stress varies
linearly over the thickness,

MY C
G'iA[s = =L <27’l + T) = Glopen + Gfclosed (b)

J

but the open-section term has a zero resultant.

X;
X
Fig. 13—6. Notation for single closed cell.
Substituting for ¢* in (13-66), taking ¢ = — ¢i°, and integrating from point
P lead to
N S dS
¢ = ¢pp + J Psc dS — Cj — (13-73)
Sp sp b
We determine ¢p by enforcing
§pt dS = 0 ©
The two additional orthogonality conditions
§x2¢t dsS = iﬁxsd)tdb’ =0 (d)
are identically satisfied by definition of the shear center.t
The shear flow due to MY is defined by (13-09),
M
=77, (©

)
7=+ | grdS=7+Q,

+ Noting that x,¢ = dQ3/ds, we can write
<§xld)t ds = -—ﬁf)ng/)j dsS

We merely have to identify this term as the moment of the flexural shear stress about the shear
center. See Prob. 11-12.
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where §" is indeterminate. Our formulation is based on no energy coupling
between ¢* and ¢, i.e., we require (see (13-47))

W dS
3€qq T = 0 (13-74)
Noting that ¢" is constant for a single cell, and using (e), we obtain
ds
o
gr = —*?d—s“ (13-75)
t

The flexural shear flow distributions for F,, F; are generated with (11-110).
We merely point out here that there is no energy coupling between ¢* and g’

ds
SE g’ — =0 ()

t

Qne can interpret (13-74) and (f) as requiring ¢/, ¢" to lead to no twist deforma-
tion, i.e, wy, ; = 0. We have expressed the flexural shear flows as (see (13-71)):

_;lq(.f) J=2 k=3

I j=3 k=2 (&)

¢’y = qV =

Finally, the dcfinition equations for the cross-sectional properties have the
same form as for the open-section:

Eq. 13-70 = I, C, )

Eq. 13-72 = x3,, X3,
Suppose X, is an axis of symmetry. Then, ¢ is an odd function of x3. If we
take the origin for S (point p) on the X, axis, ¢, = 0. Also, " is an even func-

tion of x; and x3, = 0. In what follows, we illustrate the application of the
procedure to a rectangular cross section.

Example 13-6

Rectangular Section—Constant Thickness

Applying (13-73) and taking ¢ = 0 at point () shown in (Fig. E13-6A) leads to

_ 2abt
a+b
~ b
-@ = a<§—+—5) S v (a)
—b
-0 R

The distribution is plotted in Fig. E13-6B. Note that ¢ = 0 when a = b, i, a square

section of constant thickness does not warp.
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‘s Fig. E13-6A

jmfe

—_ T
1 iS
2 ¢ X"‘
Centroid/
N I DU

Fig. E13-6B

a—h
d/}(a b

9

~ab<g‘:—%)

Distribution of ¢

We determine Q, by integrating (a),

a — b\ S?
= —_— = for segment 1-2
Qo = at <a + b) 2 (b)
b a- b aS — S—Z for segment 2-3
Q¢=(Q¢)Z+t;1+l; 5 :
and evaluate g, " with (13-75):
ds

Qd’? a — b\ [ubt
- = [0V b ©
‘b:’};is—— () (F)aern

t
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The distribution of §" follows from (b), (c),

. S\? 1 2a
DO-O 7 = — == -
e 7 D{@ 3<1 * b)}
L 2a(s 1(S\\ 1 2 :
L ’ ‘”{”‘E(E‘i(‘a))*i(”ﬂ} @
b B |
2 \a+b

and is plotted in Fig. E13-6C. Note that +@" corresponds to ¢ acting in the clockwise
{(—S) direction for +M?%. Also, D is negative for b > a.

Fig. E13—-6C

T

W %

We introduce a shape factor ¢,

width — & ©
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and express the various coefficients in terms of a, t, and {. The resulting relations are
= 16a°t ( ) (neglecting the contribution of J°)
g

| e -0
¢T3 1+<,

<_41+5L+5(2 e

C = te e T o
Si-i-g¥D
5(1 —¢)?
S
9(1+§+42> ")

. G R L L
w=le@) i) 505

Xop = X3, = 0

The variation of C,, Cs, and {; with b/a is shown in the table below:

/ 3
(= b C, C, (fm G )
a E T8
1 oc 0 0.98
2 1043 0.0877 1.27
3 4.41 Q.185 1.39
We found
t 2
C,=0{-
G)
t 2
CS =140 (‘I;) (g)

L =ofLk
=00

for an open section. Our results for the single cell indicate that

L
L= 0(11)
Co»1 (h)
Cyx 1

for a closed section. We obtained a similar result for 1L, using the displacement-model
formulation for a solid section. Since C, is due to the restrained shearing stress (¢"), we
see that shear deformation due to ¢" cannor be neglected for a closed cross section.

We discuss next the determination of the normal and shearing stresses due to warping.
The general expressions are
M.

i Ty .
=2 = = et 1
g11 O1s : f1¢>q (¥
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The maximum normal stress occurs at point 2 while the maximum shear stress can occur
at either points [ or 3. :

We consider the same problem as was treated in Example 13-4, ie, a member fully
restrained at one end and subjected to a torsional moment M at the other end. We ex-
press the stresses in terms of g}, the maximum shear stress for unrestrained torsion,

M C .
b= 1t + —
0, 7 < ; ) §)]
which reduces to
M C M
:1'1 - P k
T T a4 )

since we are considering the section to be thin-walled. The maximum stresses are
01 Imaxatpoimt 2 = C10%% tanh AL

maxatlord = ‘—2(7;9’1 (1)

. 3¢, v
”{@ﬂ
Iy,

The variation of ¢, and ¢, with height/width is shown below. We are taking Poisson’s
ratio equal to 1/3. v

r
O1s

=bla { (point2) & (point1) &, (point 3)

1 0 0 0
2 —1.04 —-0.35 +0.44
3 —1.51 —0.46 +0.65

For large AL, tanh AL ~ 1 and we sce that both the normal and shear stress are of the
order of the unrestrained-torsion stress. In the open section case, we found the restrained-
torsion shear stress to be of the order of (thickness/depth) times the unrestrained shear
stress.

To illustrate the procedure for a multicell section, we consider the section
shown in Fig. 13-7. The unrestrained-torsion analysis for this section is treated
in Sec. 11-4 (see Fig. 11-11). For convenience, we summarize the essential
results here.

We number the cells consecutively and take the +S sense from X, to X,
for the closed segments and inward for the open segments. The total shear
flow 1s obtained by superimposing the individual cell flows ¢, g5.

g" =0 for an exterior (open) segment (@)
¢" = constant for an interior segment
We let
My
7 =G ®)
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q1:51

Fig. 13—7. Notation for mixed cross section.

The constants C,, C, are determined by requiring each cell to have the same
twist deformation, w;, ;. Enforcing (11-67), 1

9 s = o Mr c
§SJ'G;{1S = 26()1_1/1] =2 GJ J ( )
for each cell leads to
aC = 2A (d)
where a, A are defined as
' s
ajj = s,-T
“ds
gy = Qa1 = "J e (e)

A = {Al, Az}

The warping function is generated by applying (13-6):

SC

T (13-76)
a5 = Psc Mz;_ t

We start at point P, in cell 1 and integrate around the centerline, enforcing
continuity of ¢ at the junction points b, ¢, and d. For example, at b, we require

q’)blPlb = d)bfeb (f)

t See also (11-32).
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which leads to a relation between ¢, and ¢p,:

b b C
¢b = d)e + J‘ Psc dS = d)P; + jP <Psc - **;L) dS (g)
e 1 s
Repeating for points C and d results in the distribution of ¢ expressed in
terms of ¢p,. One can easily verify that ¢ is continuous, ie., ¢, determined
from segment ca is equal to ¢, determined from segment cda. Finally, we
evaluate ¢p, by enforcing T

{[p dA = [¢prdS =0 ' (b)

where the integral extends over the total centerline. Note that ¢p, = 0 if P;
is taken on an axis of symmetry.
The shear flow for restrained torsion is obtained with (13-69):
é _, .
—q = Pt i
Ggd = ¢ @)
The steps are the same as for the flexural shear determination discussed in
Sec. 11-7. We take the shear flow at points P, P, as the redundants,

7], =C =12 (13-77)

and express the shear flow as )
7 =70 + G (13-78)

wherc 7, is the open section distribution and g, s due to C}, C;. The dis-
tribution, g,, has the same form as ¢“/(M4/J). We just have to replace C with
C". We generatc g, by integrating (i) around the centerline, and enforcing
equilibrium at the junction points. For example, at point b (see Fig. 13-7),

% = Gor, + Gbe ()

Note that g, = 0 at points Py, P,, e and f.

The redundant shear flows are evaluated by requiring no energy coupling
between ¢* and ¢” which is equivalent to requiring q” to lead to no twist de-
formation, w,, ;. Noting (c), we can write

ds ‘
3@ g—=0 j=12 (13-79)
S;

aC" =B

_ ds (13-80)
Bi=-® % re
S

T See footnote on page 385.
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Once ¢ and §" are known, the cross-sectional propertics (I , C,, X3, X3,)
can be evaluated. Also we can readily generalize the above approach for an
n-cell section.

13-9. GOVERNING EQUATIONS—GEOMETRICALLY NONLINEAR
RESTRAINED TORSION

In this section, we establish the governing equations for geometrically non-
linear restrained torsion by applying Reissner’s principle. This approach is a
mixed formulation, i.e., one introduces expansions for both stresses and dis-
placements. The Jinear case was treated in Sec. 13-5. To extend the formulation
into the geometrically nonlinear realm is straightforward. One has only to
introduce the appropriate nonlinear strain-displacement relations.

Our starting point is the stationary requircment +

3[[{f(6Te — BTu — ¥*)d(vol.) — [{p"u d(surface area)] = O (a)
where ¢, u, are independent variables, € = &fu), V* = V*(), and p, b are
prescribed.

We take the displacement expansions according to (13-3) and use the strain-
displacement relations for small strain and small finite rotations:

iy = uy + x5 — 03X + [
iy = Uy — wy{x3 — X3)
Uy = Lfsa + 0)11(-}22 - ~\zA)2 (13-81)
gy = Uy + 3l + 5, )
Vig = Uy, 5 + ly 4 + 3,105
Piz =iy, 3+l + @y 40
The in-plane strain measures (g, €1, 722) are of 0{w?), which is negligible
according to the assumption of small finite rotations. Actually we assume
622 = 033 = 033 = 0, L.e, plane stress. Substituting for the displacements and
noting the definition equations for the force parameters, the first term in (a)
expands to
{ffo7e d(vol) = [, {Fi[us, 1 + 32,1 + X3y )* + $ugs ¢ — %00 1)7]
+ Fylug  — 03 + 0is,  — Towq,1)]
+ Fylug, 1 + 02 — (U2, 1 + T30,,)]
+ Mo[wy  — oy, 152, 1 + X301, 1)] (13-82)
+ Mj[ws, 1 — w1 (U3, — S0, 1)]
+ Mgw, 1+ Myf + Mpf
+ IMpw? | + Mooy, bdxy

T See \Eqs. 13-33 and corresponding footnote. We are working with Kirchhoff stress and

Lagrangian strain here.
1 See Sec. 10-3, Eq. 10-28. The displaccment expansions assume small-finite rotation, ie,

sin w = w and cos w ~ 1. To be consistent. we must use {10-28).
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where the two additional force parameters are

Mp = [fo11(x3 + x3)dA

A{[Q = fj(XZOlz + X30'13)d/1
The terms inyolving the external forces have the same form as for the linear
case, but we list them again here for convenience (see (13-6)):

[fibTu d(vol.) + [[P7u d(surface area)
{

fx,(b_llh + batta + biug + mrwy + myw, + mamsy + g f)dx,
+ |Fyuy + Faougy + Faugs + Mrow, + Myw; + My + Myflei=o.c

where the end forces (the barred quantities) are defined as previously, for
example, ’

(13-83)

Fl,.\q:lﬂ = (J‘fpl dA)):l:L ete.

It remains to introduce cxpansions for the stresses in terms of the independent
force parameters and to expand V*. In the linear case, there are 8 force
measures, Fy, ..., M;, and My, Mp. Two additional force measures (Mp, M)
are present for the nonlinear case but they can be related to the previous,forge
measures. We proceed as follows. We use the stress expansions employed for
the linear case with ¢ = — g5, They are summarized below for convenience
(see Sec. 13--5):

— % M My My
Ulj = O'{J' -+ O"‘L(j + (f'ij

oty = fiM}

()"{j = /lszz + /’lj3F3

My = M4 + My

My = My

where ¢, f, g, h, and hy are functions of x,. x.. | i i iti
. /.9, X3, x3. Introducing (a) in the definitio
equations for Mp and M, leads to & "

Mp = BiF{ + poM, + f3M5 + BsM

B 1J(‘(ZJF HdA L

= X X3 ==

R A
1

r

B2 =

A x3(x3 + x3)dA

2 J) (13-84)
—1

b3 = sz(xf + x%)dA4

15

1
By = —fd)f d(x2 + xHdA
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416
and¥
Mg = m2Fy + n3Fs + niMi + My
e = ﬂ(—l’czhzk + xshsk)df (k=23 (13-85)
T RS

7Y = [§(x2fY + x3/9)dA
Certain coefficients vanish if the cross section has an axis of symmetry.f One

can readily verify that
M p = ﬁl'F 1

MQ = 0
when the section is doubly symmetric. For generality, we will retain all the

terms here.
The complementary energy density function has the same form as for the

linear case:
_ F} M3 M3 1 /M3
pr = L (_.a LM __3_> s (.;2)

(13-86)

2E\4 T, T I,) " 2E\1,
| (F} 2F,F, F? 1 , ,
RN —— Pt —_— - u Cr ry\2 13_&87

+QG<A2+ ) gy (0 & Gy (13287)

¥

L Mr
" GJ
We have shown that it is quite reasonable to neglect transverse shear deforma-
tion due to warping (C, = x,, = x3, = 0) for a thin-walled open section.
Substituting Equations (13-82)-(13-87) in Reissner’s functional and re-
quiring it to be stationary with respect to the seven displacement and eight
force measures leads to the following governing equations:

(x3rF2 + XZrF3)

Equilibrium Equations
F 1,1 + b 1 = O

d
Tee {Filus2, 1 + X301, 1) + F2 — 0 F3 — 0 (M3} + b, =0
1

d .
E{Fl(us&’,l —5626()1,1)4"1‘3 +(}J1F2 —w1,1M3} + b3 =0
1

(I + nlodM7  + (1 + niw)Mr | + mr
— Foug  + Faug ; + o(—B3F,  + B2Fs. 1)
d _ _
+ Tne {Fi(Rausy, 1 — Xptigs, 1 + Prog, ) + My(—ug, 1 + 2004 )
1

+ Mj(—ug, 1 + 2B30, 1) + Myfyw, ) =0
My —Fy+my=0
M3,1+F2+m3=0
M(p’] —M’-r+ln¢:0

T See Prob. 13-11.
1 See Prob. 13-12.
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where

g{]lxieur.cemer .
A

B3 = B + X

Pi=58+x3+ 5=
B2 =%, — %5
Force-Displacement Relations

F,
—= =+ hud Jug X X B
AE L1 T U 1+ U, + oy, (sl — Xoligy 1 + %ﬂlah, 1)

—}:- £2~ + _F_3_ X3r r
G A, Ass + TMT = Uz g — w3 + 0]1[1153‘1 — wl,lﬁs] -

~M"r:’ = U g+ Wy + o ~ugy y + w1,15,] '

T
Ty = o 1 + i)
M, (13-88)
EI‘Z‘ = 02,1 + o (g + Bawy )
M,
Ef; = 03,1+ o (~ug,; + Baoq 1)
Mi =f + 'lﬁ 2
E,.I¢, J.o1 2P, 1

o
G7 LOMT + xs,Fa + x00F3] = [ + w0, (1 + i)

Boundary Conditions (+ for Xy =L, — forx; = 0)

uy prescribed or Fy = +F,
Usz prescribed or Fy(u, | + X3w1,1) + Fy — w0, F5 — w; (M, = +
Usy prescribed or Fi(ug ; — X201 ,4) + F3 + w F, — culyle = ;
@y prescribed or Fy(Xauy, ; — XoUss, 1 + Broy ) T
+ ;;1((*721’2 +M3E3) + (1 + nfw )M + (1 + i )My
+ 20— U5y 1 -+ 2—— w - ) Yi
w3 prescribed of M, 52 J_rlj’\711)z+ e el oo = iy
w3 prescribed or My = + M,
J prescribed or M, = +M,

These equations simplify considerably when the cross section is symmetrical
and transve‘rse shear deformation is neglected.t We discuss the general solutioarla
of (13-88) in Chapter 18. The following example treats one of the simiplest
cases, a member subjected to an axial force and torsional moment. P

T See Prob. 13-13.
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Example 13-7

We consider a prismatic member (see Fig. E13-7A) having a doubly symmetric cross
section, fully restrained at one end and loaded by an axial force P and torsional moment
M. We are interested here in evaluating the influence of axial force on the torsional
behavior. The linear solution (with no axial force) was derived in Example 13-1.

X, Fig. E13-7A
7
D e i
P M
Z
/ f
f“ L |

Egquilibrium Equations (symmetrical cross section and no distributed load)
M =M, ,
Fi =0 (a)
d )
= (My + Fifiw4) =0
Xy
Force-Displacement Relations
MY = Glo, 4
o G6J
My = “C:“(f + w1.y)
.' (b)
My = Edyf
Fy = AEu; ; + LElL,0? |

Boundary Conditions

Xy =0 Uy =w; = =0

C
x1=L F1=P JW(,,:O M1+/31F10)]'1=A{ ()

Integrating the last two equations in (a) and noting the boundary conditions, lead to

F, = const = P

d
M, + ByFiwy, ¢ = const = M @
The first equilibrium equation takes the form
2
M
for = if a (e)

T GI1+ P
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where
- P PI
pPB_PL
GJ GJA
, GJ 1+ P
u

TELLY G+ P
This expression reduces to Equation (g) of Sec. 13-6 when P = 0. Once f is known,
we can determine the rotation by integrating (d), which expands to

1 GJ |
a)l,l[GJ(l—}—P—l»aH:M—-c%j (0

when we substitute for M using (b).
The general solution is,

M
[ = C; cosh ux + C; sinh pixX — ————u

GJ1 + P)
|
o [GJ (1 L P Eﬂ
1

GJ
— Gy Mxd =L e b x4 Gy cosh px
’ Y{ F oA T P uc,{ LS ZC?S o

®

{We drop the subscript on x; for convenience.) Finally, specializing (g) for these particular
boundary conditions result in

M
f= E’f(ﬂ"ﬁ) {—1 4 cosh ux — tanh puL sinh px}

M 1 1 ®)
Wy = —57(31—%5 {x» - (TT&F—:P)) {sinh px + (I — cosh px)tanh ;zL}]

These equations reduce to (13~57) when P = 0.

A tensile force (P > 0) increases the torsional stiffness whereas a compressive force
(P < 0) decreases the stiffness. Equation (h) shows that the limiting value of Pis —1. We
let P, represent the critical axial force and o, the corresponding axial stress

M

rJ
-
I 1
GJ
UC( =T
I

In order for o, to be less than the yield stress, (J/I,) must be small with respect to unity.
As an illustration, consider the section shown in Fig. E13-7B. The various coefficients
(see Example 13-4) are
& = b/h
3

th*
=L+ l=G 438+ 0)

ht? .
J:-«;—(l +20) )
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PROBLEMS

13-1. The shear stress distribution due to F 2 Is given by (see (11-95))

F,
2(]52r,3

F,
O12 = == @2 2 013 = —+—
I3 I

where ¢, are flexural warping functions which satisfy

Vs = —x,  (in A)
6(752r U
el 4] {on S)

Th.is result applies when the cross section is assumed to be rigid with respect
to in-plane deformation. The coordinate of the shear center is defined by

1 —- -
X3le = X3 = “I‘S" jj (X220, 3 — X3¢b3,, 2)dA (a)

Show that (a) reduces to
_ 1
Xy = }; J‘J\ XZ(/), dA

where ¢, is the St. Venant torsional warpi i int:
whe Eq{} ion (1100 | warping function. Hint: See Prob. 11-11
13-2. Verify (13-40) and (13-44),
13-3. This problem reviews the subject of the chapter in two aspects.
(a) No coupling between the unrestrained and restrained torsional dis-
tribution requires
fe420%, + 6110%3)d4 = 0 (a)

The unrestrained forsional shear stress distribution for twist about
the shear center (see Sec. 13-3, Equation (b)) is given by

My
Ola = — [P, — x5 + %3]

(b)

M
0'11‘3 = ”:]“ [(ﬁ:cs + X5 — .‘"&;2]

The 1‘estraine§i torsional shear stress distribution is determined from
(13-39). Verify that M} = My when ¢ = ¢ and (a) is enforced.
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(b) When the cross section is thin-walled, (a) and (b) take the form

ds
L ¢'qd— =10 ©

t

¥ My a
%* = O-Il‘slcl = “‘jz <,05c + ;R”S' fc) (d)

where || is the perpendicular distance from the shear center to the
tangent at the centerline. Equation (d) follows from (11-29) and
Prob. 11-4. We determine ¢” from (13-43). Finally, the force param-
eters for the thin-walled case are defined as
M7 = [¢'p.dS
Mg = fqg¢.,dS

Verify that My = My when ¢ = — ¢S Counsider the following cases:

(e)

1. Open section
2. Closed section
3. Mixed section

13-4. Specialize (13-57) for AL >» 1 and compare M” vs. M“. Also evaluate
w; at x = L and compare with the unrestrained value.

13-5. Refer to Examples 12-2 and 13-2. Discuss how you would modify
the member force-displacement relations developed in Example 122 to account
for restrained torsion. Consider C; = 1, x5, = X3, = 0, and-—

(a) warping restrained at both ends
(b) warping restrained only at x = L

13-6. Refer to Example 13-2. Determine the translations of the shear
center. Consider the cross section fixed at x = 0. Discuss how the solution
has to be modified when the cross section at x = L is restraincd against
translation.

13-7. Starting with the force-deformation relations based on the mixed
formulation (13-49), derive the member force-displacement relations (see
Example 12-2). Consider no warping at the end sections and take Cy = +1.
Specialize for—

(a) symmetrical cross section
(b) no shear deformation due to restrained torsion and flexure—arbitrary
Cross section.

13-8. Consider a thin-walled section comprising discrete elements of
different material properties (E, G). Discuss how the displacement and mixed
formulations have to be modified to account for variable material properties.
Note: The unrestrained torsion and flexural stress distributions are treated in
Prob. 11-14 and 12-1.

13-9. Determine the distribution of ¢, 4", and expressions for I, C,, x5,
X3, for the cross sections shown in parts a and b and part ¢c—d of the accom-
panying sketch (four different sets of data).

13-10. Determine ¢ and ¢” for the section shown.

13-11. Using the flexural shear distributions listed in Prob. 13-1, show
that .

i, = “%/33
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Prob. 13-9

[T

See part ¢,

{c)

Prob. 13-10
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Hint: One can write

-1 j j (3 Vs, + 3 V34
3
Also show that
3 = iﬁz

13-12. Specialize Equations (13-84) and (13-85) for the case where the
cross section is symmetrical with respect to the X, axis. Utilize

!J']Ie(xb x3)H()(x2> ¥3)dA = 0

where H, is an even function and H, an odd function of x;. Evaluate the co-
efficients for the channel section of Example 13-5. Finally, specialize the
equations for a doubly symmetric section,

13-13. Specialize (13-88) for a doubly symmetrical cross section. Then
specialize further for negligible transverse shear deformation due to flexure and
warping. The symmetry reductions are

X =X3=0 Xar = X3, = 0
B2 [fs = /)’4) =0 /423 = 0
Mo =n3 =11 =1y =0

I

13-14. Consider the two following problems involving doubly symmetric
Cross section.

(a) Establish “linearized” incremental equations by operating on (13-88)
and retaining only linear terms in the displacement increments.
Specialize for a doubly symmetric cross section (see Prob. 13--12).

(b) Consider the case where the cross section is doubly symmetric and the

initial state is pure compression (F, = —P). Determine the critical
load with respect to torsional buckling for the following boundary
conditions:

‘1. wy=f=0 atx=0,L  (restrained warping)

df . .
2. wy = ~l[~ =0 atx =0,L (unrestrained warping)

c
Neutral equilibrium (buckling) is defined as the existence of a nontrivial
solution of the linearized incremental equations for the same external
load. One sets

F1 = “‘P
L[Z:u3:a)1:w2=(03=~f::

and determines the value of P for which a nontrivial solution which
satisfies the boundary conditions is possible. Employ the notation
introduced in Example 13-7.

13-15. Determine the form of V, the strain energy density function (strain
energy per unit length along the centroidal axis), expressed in terms of displace-
ments. Assume no initial strain but allow for geometric nonlinearity. Note
that ¥ = V* when there is no initial strain.

14

Planar Deformation of a
Planar Member

14-1. INTRODUCTION: GEOMETRICAL RELATIONS
A member is said to be planar if—

1. The centroidal axis is a plane curve.

2. The plane containing the centroidal axis also contains one of the
principal inertia axes for the cross section.

3. The shear center axis coincides with or is parallel to the centroidal axis.
However, the present discussion will be limited to the case where the
shear center. axis lies in the plane containing the centroidal axis.

We consider the centroidal axis to be defined with respect to a global reference
frame having directions X ; and X,. This is shown in Fi ig. 14-1. The orthogonal
unit vectors dcﬁnmg the orientation of the local frame (Y,, Y,) at a pomt are
denoted by i, f,, where I, points in the positive tangent direction and #; x 7, =
f3. Item 2 requires Y, to be a principal inertia axis for the cross section.

X,

Xy

Fig. 14-1. Geometrical notation for plane-curve.
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