7.1 Integration by Parts (page 287)

CHAPTER 7 TECHNIQUES OF INTEGRATION

7.1 Integration by Parts (page 287)

Integration by parts aims to exchange a difficult problem for a possibly longer but probably easier one. It is
up to you to make the problem easier! The key lies in choosing “u” and “dv” in the formula [ u dv = uv— [ v du.
Try to pick u so that du is simple (or at least no worse than u). For u = z or z2 the derivative 1 or 2z is simpler.
For u = sin z or cos z or ¢ it is no worse. On the other hand, choose “dv” to have a nice integral. Good choices
are dv = sin z dz or cos z dz or €” dz.

Of course the selection of u also decides dv (since u dv is the given integration problem). Notice that u = Inz
is a good choice because du = idz is simpler. On the other hand, In z dz is usually a poor choice for dv, because
its integral zln z — £ is more complicated. Here are more suggestions:

Good choices for u: In z, inverse trig functions, z*, cos z, sin z, e* or e°®
These are just suggestions. It’s a free country. Integrate 1 — 6 by parts:
1. [ ze"%dz.
e Pick u = z because g—'i = 1 is simpler. Then dv = e *dz gives v = —e~*. Watch all the minus signs:

Judv= z (—e2)—[ (-¢7%) dz=-ze"—e*+C
u v v du

2. fassec“1 z dz.

e If we choose u = z, we are faced with dv = sec™!z dz. Its integral is difficult. Better to try
= -1 = —dz i ? - = 1,2
u = sec” ' z, so that du T Is that simpler? It leaves dv z dz, so that v = 5z°. Our

integral is now uv — fv du :

(sec"lz)(%zz) —f%z2~______._lx| d:;_'l = 2z seclz+ 1 f xfx—ff

= 2z sec lr+ \/22 1+ C.

The + sign comes from |z|; plus if z > 0 and minus if z < 0.

3. fe’ sinz dz. {Problem 7.1.9) This example requires two integrations by parts. First choose u = ¢® and
dv = sinz dz. This makes du = e* dz and v = —cosz. The first integration by parts is fez sinz dz =
—e®cosz + f e® cos z dz. The new integral on the right is no simpler than the old one on the left. For the
new one, dv = cos z dz brings back v = sin z:

/e“cosz dz = e‘sinx—/exsinx dz.
Are we back where we started? Not quite. Put the second into the first:
/e’”sinx dz = —e®cosz + €"sinz — /ezsina: dz.
The integrals are now the same. Move the one on the right side to the left side, and divide by 2:

. |
‘/‘ex sinz dz = Ee”(smz —cosz) + C.
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7.1 Integration by Parts (page 287)

4. [z?Inz dz (Problem 7.1.6). The function Inz (if it appears) is almost always the choice for u. Then

du = %. This leaves dv = z2dz and v = 1z°. Therefore

1 1 1 1
/zzlnz dngzslnz—/gzzdzz§z3lnm—§zs+()’.

z%dzx
. [ F
e Generally we choose u for a nice derivative, and dv is what’s left. In this case it pays for dv to have a
3

nice integral. We don’t know [ ;?+1dz but we do know [ ﬁ:‘ﬁdx = V22 + 1. This leaves u = z?2
with du = 2z dz:

3d
/—121:1 = %22 + -f2z\/:1:2+1dz
vz“ +
= 2Vz2+1-2(z2+1)*/2+ C.

Note Integration by parts is not the only way to do this problem. You can directly substitute u = z2 +1
and du = 2z dz. Then z2 is u — 1 and z dz is %du. The integral is

1 fu—1 L[ iz iz, _1ap iy
5 \/adu —2/(u u )du—su u/*+C
= %( R 1)3/2 - (x2 + 1)1/2 + C  (same answer in disguise).

6. Derive a reduction formula for [(Inz)"dz.

e A reduction formula gives this integral in terms of an integral of (Inz)" !. Let u = (Inz)" so that
du = n(Inz)"~*(1)dz. Then dv = dz gives v = z. This cancels the  in du :

T

/(m z)"dz = z(lnz)" — /n(ln z)" " dz.

6'. Find a similar reduction from [ z"e” dz to [ 2" !e® dz.

7. Use this reduction formula as often as necessary to find [(Inz)%dz.

e Start with n =3 to get [(Inz)%dz = z(Inz)® — 3 [(In z)2dz. Now use the formula with n = 2.
The last integral is z(Inz)? — 2 [ Inz dz. Finally [ Inz dz comes from n = 1:
f1Inz dz = z(lnz) — [(Inz)°%dz = z(In z) — z. Substitute everything back:

(Inz)® - 3[z(Inz)? - 2[zlnz — z]| + C
(Inz)® — 3z(Inz)? + 6zlnz — 62 + C.

Problems 8 and 9 are about the step function U(z) and its derivative the delta function §(z).
8. Find ffz(zz — 8)§(z)d=

e Since §(z) = 0 everywhere except at z = 0, we are only interested in v(z) = z? — 8 at z = 0. At that
point v(0) = —8. We separate the problem into two parts:

/_22(:02 — 8)6(z)dz + [26(22 — 8)6(z)dzx = -8+ 0.

The first integral is just like 7B, picking out v(0). The second integral is zero since §(z) = 0 in the
interval [2,6]. The answer is —8.
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7.1 Integration by Parts (page 287)

9. (This is 7.1.54) Find the area under the graph of 4% = [U(z + Az) — U(z)]/Az.

o For the sake of this discussion let Az be positive. The step function has U(z) = 1 if z > 0. In that
case U(z + Az) = 1 also. Subtraction U(z + Az) — U(z) leaves zero. The only time U(z + Axz) is
different from U(z) is when z + Az > 0 and z < 0. In that case

U(z+Az)-U(z)=1-0=1and U(Z+A:2):_U(z) =K1;,
area | Aav_1 _, area 1 Av_ 1 _ g,
/ Ax  Ax Ax  Ax
t > + >
-1 Ax —.— 1 -1 Ax =i 1

The sketches show the small interval —Az < z < 0 where this happens. The base of the rectangle is

Az but the height is ﬁ. The area stays constant at 1.

The limit of ﬂﬁ%ﬁ:ﬂﬂ is the slope of the step function. This is the delta function U’(z) = §(z). Certainly
§(z) = 0 except at £ = 0. But the integral of the delta function across the spike at = 0 is 1. (The area hasn’t
changed as Az — 0.) A strange function.

Read-throughs and selected even-numbered solutions :

Integration by parts is the reverse of the product rule It changes fu dv into uv minus fv du.Incaseu=z

and dv = e2"dz, it changes [ ze?*dz to %xe2x minus f 1 02Xgx. The definite integral fo ze?*dz becomes 3 et
minus i In choosing u and dv, the derivative of 4 and the integral of dv/dz should be as simple as p0551b1e.
Normally In z goes into u and ¢® goes into v. Prime candidates are u = z or z2 and v = sinz or cos x or eX.

-1

When u = 22 we need two integrations by parts. For fsin_1 z dz, the choice dv = dz leads to x sin™*x minus

[xdx/V1-x2.

If U is the unit step function, dU/dz = § is the unit delta function. The integral from —A to A is U(A) —
U(—A) = 1. The integral of v(z)é(z) equals v(0). The integral f L cos z §(z)dz equals 1. In engineering, the
balance of forces —dv/dz = f is multiplied by a displacement u(z) and integrated to give a balance of work.

14 [cos(Inz)dz = uv — [ vdu = cos(In z)z + [ zsin(lnz) Ldz. Cancel z with L. Integrate by parts again to get
cos(Inz)z + sin(In z)z — [ zcos(In z) 1 dz. Move the last integral to the left and divide by 2.
The answer is (cos(Inz) + sin(Inz)) + C.

18 uv — v du = cos™!(2z)z + fxﬁ = zcos™!(2z) — (1 -422)/2 + C.
22 uv— [ v du = z%(— cos z) + [(cos z)322dz = (use Problem 5) = —z° cos z + 3z2sin z + 6z cos z — 6sin z + C.

28foefdz—f —oc“(2udu)=2¢"(u~1)jj=2. 38 [z"sinzdz=—z"cosz+n [z" 'cosz dz.

44 (a) ¢® = 1; (b) v(0) (c) O (limits do not enclose zero).

46 fjl §(2z)dz = f.f:_z §(u)e = 1 . Apparently 5(21) equals 16(z); both are zero for z # 0.

48 fol §(z— %)dz = f_lﬁzé( Jdu = 1 fo e*8(z — 3)dz = fl/z “+%5(u)du = 61/2;5(9:)6(:5— i)=o0.

60 A = fle Inz dz = [z Inz — z|$ = 1 is the area under y=Inz. B= fol eYdy = e — 1 is the area to the left of
y = Inz. Together the area of the rectangleis 1+ (e — 1) =e.
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7.2 Trigonometric Integrals (page 293)

This section integrates powers and products of sines and cosines and tangents and secants. We are constantly

2 2 z. Starting with fsin3 z dz, we convert it to [(1 — cos® z)sinz dz. Are we unhappy

about that one remaining sin 7 Not at all. It will be part of du, when we set u = cos z. Odd powers are actually

using sin“z = 1 — cos

easier than even powers, because the extra term goes into du. For even powers use the double-angle formula in
Problem 2 below.
1. [(sinz)~3/?(cos 2)2dz is a product of sines and cosines.

e The angles = are the same and the power 3 ts odd. (—% is neither even nor odd.) Change all but one

2

of the cosines to sines by cos? z = 1 — sin” z. The problem is now

/(sin z)7%/?(1 — sin® z) cos z dz = /(u_:’/2 — u!/?)du.

Here u = sin z and du = cos ¢ dz. The answer is

2 2
—2u" 12 gus/z 4+ C = —2(sinz)~ /2 - g(sin z)%/% + C.
2. fsin4 3z cos? 3z dx has even powers 4 and 2, with the same angle 3z.

o Use the double-angle method. Replace sin® 3z with (1 — cos 6z) and cos?® 3z with (1 + cos6z). The

problem is now

f (1—cos 6x)? (14cos Gx)d
4 2

x

00| OO

f(l — 2cos 6z + cos? 6z) (1 + cos 6z)dz
J(

1 — cos 6z — cos? 6z + cos® 6z)dz.

The integrals of the first two terms are z and ésin 6z. The third integral is another double angle:

1 1 1
/c052 6z dz = / 5(1 + cos 12z)dz = Ea:—+— izsin 12z.

For fc053 6z dz, with an odd power, change cos? to 1 — sin®:

d | 1
/coss 6z dz = /(1 — sin® 6z) cos 6z dz = /(1 - 112)~éf =5 sin 6z — Igsm3 6z.
Putting all these together, the final solution is
1, 1 11 1, 1 ., 1 1 1 s
Zlz— > sin6z — (zz+ — = - = —z— —sin12z — — sin® 6z + C.
8[:1: 6smﬁac (2:1:+ 24sm12z)+6sm6$ 1g Sin 6] 6%~ gg Sin12z — [y sin" 6z +

3. [sin10z cos4z dz has different angles 10z and 4z. Use the identity sin 10zcos4z = —;-sin(lo + 4)z +

3 sin(10 — 4)z. Now integrate:

1 1 1 1
~q Z g1 _— —_— A
/(2 sin 14z + 7 sin 6z)dz i 14z — - cos 6z +C
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7.2 Trigonometric Integrals (page 293)

4. [ cos zcos4z cos 8z dz has three different angles!

e Use the identity cos4zcos8z = L cos(4 + 8)z + % cos(4 — 8)z. The integral is now 3 [(cos zcos 12z +
cos zcos 4z)dz. Apply the cos pzcos gz identity twice more to get

1 1 sin132z sinllz sinbz sin3z
/ﬁ ) +C.

- - 3 - -
cos 13z + cosllx+2c055x+ cos 3z)dz ( Tt t 3

5. [tan®z sec* z dz. Here are three ways to deal with tangents and secants.

e First: Remember d(tan z) = sec? z dz and convert the other sec? z to 1+ tan? z. The problem is

/tan5 z(1 + tan? z) sec? z dz = /(u5 + u")du.

e Second: Remember d(sec z) = sec ztan z dz and convert tan* z to (sec2 z — 1)2. The integral is

/(se02 z — 1)%?sec® zsec ztanz dz = /(u2 ~1)%udu = [(u7 - 2u® + u®)du.

e Third: Convert tan® zsec* z to sines and cosines as HB;Z Eventually take u = cos z:

cos®z"’
jl—-cos’ z!’ . _ -9 -7 -5 .
f cos® z sinzdz = f(cos z— 2cos Z + cos z) sin z dz

It

J(~v™2 +2u™" — u~%)du.

6. Use the substitution u = tan £ in the text equation (11) to find [ /4 _dr

1—-sinz"’

e The substitutions are sinz = T%%’ and dz = 1%:_’"“

/ 1 / 1 2du [ 2du / 2du 2
— dz= = = = .
1—sinz 1- 72 1+u? (14 u?)-2u (1-u)3?2 1-u

The definite integral is from z = 0 to z = §. Then u = tan7 goes from 0 to tan §. The answer is
2 -2~141

1—-tan ¥

This gives

7. Problem 7.2.26 asks for fO" sin 3z sin 5z dz. First write sin 3z sin 5z in terms of cos 8z and cos 2z.

e The formula for sin pz sin gz gives

* 1 1
/(; (—% cos 8z + 3 coe 2z)dz = [—11(—5 sin 8z + 1 sin 2z]§ = 0.
8. Problem 7.2.33 is the Fourier sine series Asinz + Bsin2z + Csin3z + - - - that adds to z. Find A.

o Multiply both sides of z = Asinz + Bsin2z + Csin3z + - - - by sin z. Integrate from 0 to x:

n ® n T
/ zsinz da:=/ Asin’z dx+/ Bsin2z sinz dz+/ Csin3zsinz dz + - --
0 0 0 0

All of the definite integrals on the right are zero, except for f(;r Asin® z dz. For example the integral
of sin 2z sin z is [ § sin 3z + 1 sin z|§ = 0. The only nonzero terms are [ zsinz dz = [ Asin®z dz.
Integrate z sin z by parts to find one side of this equation for A :

T ™
/ zsinz dz = |~z cos z|] +/ cosz dz = [~zcosz +sinz|] = .
0 0
On the other side [ Asin’z dz = 4|z —sinzcosz]j = 4%. Then 4% = 7 and A = 2.
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7.2 Trigonometric Integrals (page 293)

e You should memorize those integrals [J sin® zdz = [ cos? z dz = L. They say that the average value
1

of sin® z is %, and the average value of cos? z is 2
e You would find B by multiplying the Fourier series by sin 2z instead of sin z. This leads in the same

way to [ zsin2z dz = [ Bsin® 2z dz = B because all other integrals are zero.

9. When a sine and a cosine are added, the resulting wave is best expressed as a single cosine: acosz+bsinz =

Va2 + b2 cos(z — ). Show that this is correct and find the angle o (Problem 7.2.56).
b

e Expand cos(z — a) into cos z cos & + sin z sin a. Choose « so that cos @ = —=f— and sina = ==,
Va3+b 5 \/(zl +b

Our formula becomes correct. The reason for Va2 + b2 is to ensure that cos? o +sin? o = _ﬁ’i%‘f =
1 g. Thus 3cos z + 4sinz = 5cos(z — tan™! %)-

et

a
a
Dividing sin &« by cos & gives tana = g or a = tan”

10. Use the previous answer (Problem 9) to find [ m.

e Witha=1+v3and b=1we have Va2 + b2 =3+ 1=2 and a = tan™! % = & Therefore

dz i dz 1 T 1 T T
= == — —=)dz = =1 -~ =)+t - = .
/\/gcosx-f-sinz ./ 2cos(z — 7/6) 2/sec(z 6) =3 n|sec(z 6)+ an(z 6)|+C

The figure shows the waves v/3 cos z and sin z adding to 2 cos(z — z)

2 V?cosx+sinx=2c0s‘x—-’6£)
V3
1T sin x
0 L n 2R
6
-IT VIcosx
2l

11. What is the distance from the equator to latitude 45° on a Mercator world map? From 45° to 70°7

o The distance north is the integral of sec z, multiplied by the radius R of the earth (on your map). See
Figure 7.3 in the text. The equator is at 0°. The distance to 45° = £ radians is
n/4
R[ sec z dz = Rln(sec z + tan 1)3/4 =RIn(vV2+1)— Rln1=0.88R.
0

70°

The distance from 45° to 70° is almost the same: Rln|sec z + tan z| 450 N 0.85R.

Read-throughs and selected even-numbered solutions :
To integrate sin z cos® z, replace cos?z by 1 — sinZx. Then (sin4 z — sin® z)cos z dzr is (u4 - u6) du. In
terms of u = sin z the integral is %u5 - %u". This idea works for sin™ z cos™ z if m or n is odd.

If both m and n are even, one method is integration by parts. For [ sin* z dz, split off dv = sinz dz.
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7.2 Trigonometric Integrals (page 293)

2

Then — f v du is f 8 sin®x cos?x. Replacing cos? z by 1 — sin“x creates a new sin? z dz that combines with

the original one. The result is a reduction to [ sin® z dz, which is known to equal —%—(x — sin x cos x).

The second method uses the double-angle formula sin® z = %(1 — c08 2x). Then sin* z involves cos? 2x.
Another doubling comes from cos? 2z = %(1 + cos 4x). The integral contains the sine of 4x.

To integrate sin 6z cos 4z, rewrite it as 1 sin 10z + %sin 2x. The integral is —%cos 10x —%cos 2x. The
definite integral from 0 to 27 is zero. The product cos pz cosgz is written as % cos(p + ¢)z + % cos(p — q)x.
Its integral is also zero, except if p = q when the answer is .

. Similarly [ sec® z(sec z tan z dz) = %seclox.

2

2 10x

With u = tan z, the integral of tan® z sec? z is %tan

For the combination tan™ z sec™ z we apply the identity tan?z = 1 + sec® x. After reduction we may need

Jtan zdz = —In cosx and [ sec z dz = In(sec x + tan x).

6 [sin® zcos® z dz = [ sin® z(1 — sin® z) cos z dz = %sin“x - %sinsx +C

nd . . 2
10 [sin® azcosaz dz = SIB°8X | ¢ and [sinazcosaz dz = SB7EX 4 ¢

18 [sin® zcos? 2z dz = [ 1250822 cog? 25 dg = [(Ltcosdz _ cos2z(y _ 4in? 95))ds =
i:_+sinT4x_ﬂllz2_x+_sijn?21x_+a This is a hard one.

18 Equation (7) gives fo"/ 2cos" zdz = [99&"—'@]3’ 2+ n-l 0"/ ? cos®2 z dz. The integrated term is zero
because cos 7 = 0 and sin 0 = 0. The exception is n = 1, when the integral is [sin z]g/ =1

26 [, sin3zsin5z dz = [ —cosfztcondsjy [:_Sil%_sl + Si%zl]g =0.

30 f:" sin z sin 2z sin 3z dz = foz’r sin 2g(—cosdztcosdz) jy foz’r sin 22(%’%;’*%)(13: =

3 2
- %Z_x + S—Q-%l’s - 9%)5]3" = 0. Note: The integral has other forms.

32 J; = cos zdz = [z sin z|§ — [ sinz dz = [x sin x + cos x|j = —2.
34 [ 1sin3z dz = [ (Asin z+ Bsin 22+ Csin3z+- - ) sin 3z dz reduces to [—<2532]r — 04+0+C [ sin® 3z dz.
Then 2 =C(§) and C = .
44 First by substituting for tan? z : [ tan? zsec z dz = [ sec® z dz — [ sec z dz. Use Problem 62
to integrate sec® z : final answer %(sec x tan x — In|sec x + tan x|) + C. Second method from
line 1 of Example 11: [ tan? zsec zdz = sec ztan z — [ sec® z dz. Same final answer.
52 This should have an asterisk! [ $1;2ds = | 1%3;—“):&: = [(sec® z — 3sec z + 3cos z — cos® z)dz = use
Example 11 = Problem 62 for [ sec® z dz and change [ cos® z dz to [(1 — sin? z) cos z dz.

Final answer M%’—‘—K - %lnlsec x + tan x| + 2 sin x + -————Si’f'x +C.

— . Ty _ T _ . o T __ . d _

54 A=2:2cos(z +1’3’) =2coszcos & — 2sinzsin § = cos z — v/3sin z. Therefore | (U)T—a;:;;'z_)ﬂ— =
—5-—“08“(1_'_%) = gtan (x+ §) + C.

58 When lengths are scaled by sec z, area is scaled by sec®x. The area from the equator to latitude z is then

proportional to f sec? z dz = tan z.
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7.3 Trigonometric Substitutions (page 299)

The substitutions may be easier to remember from these right triangles:

x=asin @ x = atanf x = asech

Each triangle obeys Pythagoras. The squares of the legs add to the square of the hypotenuse. The first triangle

osite  __ z —_ 3 o
has sinf = —Lhypotenme = 2, Thus z = asinf and dz = acos 6de.

Use these triangles in Problems 1-3 or use the table of substitutions in the text.

1. f: ﬁ? has a plus sign in the square root (second triangle).

e Choose the second triangle with a = 3. Then z = 3tand and dz = 3sec? df and Vz2 + 9 = 3sech.

Substitute and then write secf = cols o and tanf = %:
/ dz _ 3sec? 9df _ / cosfdf -1
222+ 9 (9tan®6)(3secd) J 9sin®6 9sind’

The integral was %u""du with u = sind. The original limits of integration are z = 1 and z = 4.
Instead of converting them to 6, we convert sin# back to z. The second triangle above shows

1 hypotenuse vz2+9 —Vz?2+9 -5 V10
and then [ ————|{ = — + — ~ 0.212.
sinf  opposite - 9z 36 9

2. f\/ 100 — z2 dz contains the square root of a? — z? with a = 10.
e Choose the first triangle: z = 10sinf and v/100 — z2 = 10cosf and dz = 10cos §d6:
1 .
/ V100 — z2 dz = /(10cos )10 cos fdf = 100/ cos® §df = 100 - '2'(0 + sinf cos8) + C.
Returning to z this is 50(sin™* & + & - 3@) =50sin"" & + 12100 — 2.
3. f z—,% does not exactly contain z2 — a?. But try the third triangle.

e Factor v/9 = 3 from the square root to leave \/ 22— %. Then a? = gg§ and a = % The third triangle
has z = % secf and dz = %secO tanfdd and v/9z2 — 25 = 5tan§. The problem is now

/‘ % sec § tan #df 3
(

3
sfdf = — sinf + C.
%)2 sec? 6(5tan 6) ~ 25 _/ co 25

The third triangle converts 23—5 sin § back to -“"9;—?&.
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7.3 Trigonometric Substitutions (page 299)

4. For f = the substitution z = sin§ will work. But try u =1 - 22

e Then du = —2z dz and z? = 1 — u. The problem becomes —3 [ -(lu;,“,),ﬂ =1 [(u=1/2 — u~1/?)du.

In this case the old way is simpler than the new.

Problems 5 and 6 require completing the square before a trig substitution.
5. [ 7;==s+= requires us to complete (z — 4)2. We need 42 = 16 so add and subtract 10 :
22 — 8z + 6 = (z° — 8z + 16) — 10 = (z — 4)% — 10.

This has the form u? — a? with u = z — 4 and a = 1/10. Finally set u = v/10sec 6:

/ dz _/' u _/\/_Osecﬂtanﬂdﬂ /sec9d0
Vz2 —-8z+6 Vvu2-10 V10tan 6

6. [ 3@dw requires us to complete 2z — z? (watch the minus sign):

2z — 2% = —(2® - 22) = —(z® -2z + 1) +1=1- (z - 1)%

This is 1 — u? with u = z — 1 and z = 1 + u. The trig substitution is u = sin §:

/ V2z—a? _ / m / cos?6df [ (1—sin®9)

1+u 1+sind 1+ sin 6) d0=/(1—sm9)d9.

Read-throughs and selected even-numbered solutions :

The function v/1 — z2 suggests the substitution z = 8in #. The square root becomes cos § and dz changes to
cos 6 df. The integral f(l - :1:2)3/2dx becomes fcos40 df. The interval ,f, < z £1 changes to % <6< %

or Va2 — z2 the substitution is £ = a sin § with dz = a cos 6 df. For z? — a? we use z = a sec § with
dz = asecftanf. (Insert: For 22 + a® use z = a tand). Then [dz/(1 + z2) becomes [ df, because
1+ tan2 0 = sec20. The answer is § = tan~! z. We already knew that 1+1x 5 is the derivative of tan~! z.

The quadratic z2 + 2bz + ¢ contains a linear term 2bz. To remove it we complete the square. This gives
(z+5)2 + C with C = ¢ — b2. The example 22 + 4z +9 becomes (x + 2)% + 5. Then u = z+2. In case z? enters
with a minus sign, —z2 + 4z + 9 becomes —(x — 2)2 + 18. When the quadratic contains 4z2, start by factoring
out 4.

2z=asec9,zz—a2=a2tan29,f\/% asecotanods _ =In|secd + tan 6| = In|X + )—(3—1|+C

atanb

4 z=}tanf, 1+ 922 =sec? 4, f1+9z= —fl:zz,:de g:%tan 13x 4+ C.

12 Write V28 — 28 = z3V/1 — 22 and set z = sinf : f V28 — 28dz = [ sin® 6 cos §(cos 9df) =
3 (:083 cOo8
J sin6(cos?§ — cos* §)df = —<08°0 1 <00 — _L(1-x%)3/Z 4 L(1-x2)5/2 . ¢
. dzx cos 6dé —
14z—sm0,fm f:osa tan0+0—7=1=_=;‘-§+0.
32 First use geometry: f 1 /2\/ 1 — z2dz = half the area of the unit circle beyond z = % which breaks into

105



7.4 Partial Fractions (page 304)

1(120° wedge minus 120° triangle) = 3(5 — 3 -3 -2¢/1- (5 ) )=§~ 3@
Check by integration: f11/2\/1 — 22dz = [1(zV1 — 22 +sin”~ )]1/2 = —(E - %Aé ~-2)=5- 38@.

34 [ L2 = fsec:c dz = In |sec x + tan x|+ C; cho”(i:zg:;) = [ 3% —f“;’f}f‘:m [escPzdo— [% =
l-cosx
—cotz + snz = smx + C; f\/l+cosz = f fcos«'i = \/Eln[sec7+tan7|+0

40 z=cosh§: fﬁd:c fcs(:;“h 99 sinh 8df = ft:anh2 fdb = f(l—sechzﬂ)dﬁ = f—tanhf =cosh~1x — @+C’

44 22 +22+8=—(z—1)2+9
5Of\/5—% f du__ Set u = 3sinf : fmso‘w:@:sin
(2

cos @
dz _ _ x- de  __ 11,2u—8 _ 11,.X-2
ﬁf’;‘f-z\/— —\C\/—"' f[a:+22 16 fu’—ul(i_gln25+8_§1n +C

52 (a)u=z-2(b)u=z+1(c)u=z-5{d)u=z—3

-1

%= sin']'x~——§:l + C;

7.4 Partial Fractions (page 304)

This method applies to ratios 5((—- where P and Q are polynomials. The goal is to split the ratio into pieces

that are easier to integrate. We begin by comparing this method with substitutions , on some basic problems

where both methods give the answer.

22 _dz. The substitution u = z2 — 1 produces [ % = In|u| = In|z? — 1].
zé-1 u
e Partial fractions breaks up this problem into smaller pieces:

2z 2z A B 1 1

= lits int = .
z? -1 (x+1)(:c—1)Splsmoa:+1+z—1 z+1+z—1

Now integrate the pieces to get In |z+1|+In |z—1|. This equals In |z2—1|, the answer from substitution.

We review how to find the numbers A and B starting from x?fl.

e First, factor z2 — 1 to get the denominators z+ 1 and z — 1. Second, cover up {z — 1) and set z = 1:

2 A
z = + B becomesz—zr—-%:B. Thus B = 1.

(z+1)(z—-1) z+1 =z-1 (z+1)

Third, cover up (z + 1) and set z = —1 to find A:

2 -2
Atx:—lwegetA=—x——=—=1.
(z—1) -2

That is it. Both methods are good. Use substitution or partial fractions.

2. [ -s=7dz. The substitution z = secf gives f “%ﬁ‘g“—"de = [ 246

sin @

e The integral of is not good. This time partial fractions look better:

sin 6

L 4 splits into A + N 2
22-1 (z+1)(z-1) P z+1 B

z—1 :L‘+1+.'L'--1.

The integral is —21In |z + 1] + 2In |z — 1| = 2In|2}|. Remember the cover-up:
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7.4 Partial Fractions (page 304)

4 . 4
z=1gives B= ———— = 2. x=—1g1vesA=—-(x—_T)=

) %

3. f i%f‘_’—:dz is the sum of the previous two integrals. Add A’s and B’s:

2z + 4 A B -1 3
= -+ = + .
z2-1 z+1 z-1 zz+4+1 z-1

In practice I would find A = —1 and B = 3 by the usual cover-up:

2z + 4 6 2z +4
:czlgivesB=L=—. a:=—1givesA=——I—+————
(z+1) 2 (z-1)

The integral is immediately —In |z + 1|+ 31In |z — 1|. In this problem partial fractions is much better than

linear _ degree 1
quadratic degree 2°

The text solves the logistic equation by partial fractions. Here are more difficult ratios ZJ(%.

2
==

substitutions. This case is That 1s where partial fractions work best.

e It is the algebra, not the calculus, that can make —g—%% difficult. A reminder about division of polyno-
mials may be helpful. If the degree of P(z) is greater than or equal to the degree of Q(z), you first

divide Q into P. The example requires long division:

x
z242z+1
z divide z? into z° to get z
22+2z+1 V8
3+ 222 + 2 multiply z2 + 2z + 1 by z
3

—2z2 — z  subtract from z

= g+ =28 =z  Thic

3
=z
z3+2z+1 z242z+1"

new fraction is %?Leg. So the division has to continue one more step:

The first part of the division gives z. If we stop there, division leaves

gree
z—2 divide z2 into —2z? to get —2
z24+2z+1 Vzd
2+ 222+ z
-2z -z

—22% — 4z — 2  multiply 22 + 2z + 1 by —2
3z + 2 subtract to find remainder

Now stop. The remainder 3z + 2 has lower degree than z? + 2z + 1:

z° 5 3z+2 dv f cial fracti
— = I — _+_ ——— IS TE )
z2+2z+1 22422+ 1 ady for partial fractions

Factor z% + 2z + 1 into (z + 1)2. Since z + 1 is repeated, we look for

3z+2 A n B

(z+1)2 (z+1)  (z+1)
Multiply through by (z + 1)% to get 3z+2 = A(z+ 1)+ B. Set z = —1 to get B = —1. Set z = 0 to
get A+ B = 2. This makes A = 3. The algebra is done and we integrate:

z° 3z +2 3 1
L s = [(z-2+ 22 Vig= [(z— _
/z2+2x+1 ’ /(z T A " /(z S R P

1
=5I2—2I+3]n|z + 1+ (z+1)"+C.

5 (notice this form!)
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7.4 Partial Fractions (page 304)

3
4. f z—;‘_'—zd:t also needs long division. The top and bottom have equal degree 2:

1 divide z? into z2 to get 1
240z—-4 V22 +z
22+ 0z — 4 multiply z% — 4 by 1
z+4 subtract to find remainder z + 4

. 2
This says that f,—'f% =1+ fgji% =14+ (—z—_—g—ﬁ;—ﬂ—). To decompose the remaining fraction, let

z+4 A + B
(z-2)(z+2) =z-2 =z+2

Multiply by z — 2 so the problem is :‘—'L = A+ %2:221 Set z =2 to get A = g— = % Cover up z+ 2 to

get (in the mind’s eye) 22 = A—(E%Z + B. Set z = —2 to get B = —Z. All together we have
=% + : 5 3 1
/ zda:-—/(1+ :‘i —ziz)dx=z+§ln’z—~2|—51n|z+2|+C.

f%}%dm requires no division. Why not? We have degree 2 over degree 3. Also z? + 3 cannot be

factored further, so there are just two partial fractions:

7z +14z+15 A LBzt C
(z24+3)(z+7) z+7 22+3°

Use Bz + C over a quadratic, not just B!
Cover up £+ 7 and set £ = —7 to get 250 = A or A = 5. So far we have
52

72 +14z+15 5 +B:c+C
(2 +3)(z+7) z+7 22+3
c
37

or C = 0. Then set z = —1 to get 24=%+;4§_

We can set z = 0 (because zero is easy) to get 2 = 2+
7#25)dz = 5|z + 7|+ In(z® + 3) + C.

Thus B = 2. Our integration problem is f(z_”

6. (Problem 7.5.25) By substitution change [ 1% to [ -Q—%-Z—%du, Then integrate.

1—e®

e The ratio i—’fg—id:c does not contain polynomials. Substitute u = ¢*, du = €* dz, and dz = %’i to get

%. A perfect set-up for partial fractions!

1+u _f_i B 1 2

u(l—u) « 1w 1w
The integralisIn u —2In|l —u|=z - 2In|1 - ¢*|+ C.

Read-throughs and selected even-numbered solutions :

The idea of partial fractions is to express P(z)/Q(x) as a sum of simpler terms, each one easy to integrate.
To begin, the degree of P should be less than the degree of Q. Then @ is split into linear factors like z — 5
(possibly repeated) and quadratic factors like 22 + z + 1 (possibly repeated). The quadratic factors have two

complex roots, and do not allow real linear factors.

A factor like £ — 5 contributes a fraction A/(x — 5). Its integral is A In(x — 5). To compute A, cover upx — 5
in the denominator of P/Q. Then set z = 5, and the rest of P/Q becomes A. An equivalent method puts all
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7.5 Improper Integrals (page 309)

fractions over a common denominator (which is Q). Then match the numerators. At the same point (z = 5)
this matching gives A.

A repeated linear factor (z — 5)? contributes not only A/(z — 5) but also B/(x — 5)2. A quadratic factor like
z? + z + 1 contributes a fraction (Cx + D)/(z? + z + 1) involving C and D. A repeated quadratic factor or a
triple linear factor would bring in (Ez + F)/(2® + = + 1)? or G/(z — 5)°. The conclusion is that any P/Q can
be split into partial fractions, which can always be integrated.

1 _ _1 1/2 1/2
6:ix—li x+1)——;+;—Ll+—L

z+1
14 z+1V224+0z+1  Zdl=z-1+:2 16 oip=-i-L+-4
18 3 _ A(z+3)+B(z—-3)

(‘3—3:;(x+3)

= S840 is impossible (no z2 in the numerator on the right side).
Divide first to rewrite ’

e =1t mﬁm = (now use partial fractions) 1+ f% - ;3%

22 Set u = /7 5o u? = z and 2u du = dz. Then [ 1M2dz = [ 1=%2y du = (divide u + 1 into —2u? + 2u) =
1+/z 1+u

—2u+4—- 2 )du=—-u?+4u—4ln{u+1)+C=—x+4yx—-4In{/x+1) +C.
u+1

7.5 Improper Integrals (page 309)

An improper integral is really a limit: f;° y(z)dz means limy_ oo f; y(z)dz. Usually we just integrate and
substitute b = oo. If the integral of y(z) contains e then ™ = 0. If the integral contains 1 or ;ﬁ then
% = 0. If the integral contains tan™! z then tan™! oo = 5. The numbers are often convenient when the upper
limit is b = oo.

Similarly ffow y(z)dz is really the sum of two limits. You have to use a and b to keep those limits separate:

limg, o f: y(z)dz + limy_, o fob y(z)dz. Normally just integrate y(z) and substitute a = —oco and b = oo.

EXAMPLE 1 % 2 —[ltan~'2]o = L(Z)- L(-Z)=1=

—o0 z3+5 5 5\2) 7 5\ 2) T 5
Notice the lower limit, where tan~! ¢ approaches —% as a approaches —oco. Strictly speaking the solution
should have separated the limits a = —co and b = co:
*  dz TS TR SV SR 2%
[ s =t (e S Jim e 5

If y(z) blows up inside the interval, the integral is really the sum of a left-hand limit and a right-hand limit.

EXAMPLE 2 ff,‘, ‘zi,’— blows up at z = 0 inside the interval.
e If this was not in a section labeled “improper integrals,” would your answer have been [-1z7%]2, =
13- 2) = 37 This is a very easy mistake to make. But since J; is infinite at z = 0, the integral is

improper. Separate it into the part up to z = 0 and the part beyond z = 0.

The integral of zl—a is % which blows up at z = 0. Those integrals from —2 to 0 and from 0 to 3 are both

infinite. This improper integral diverges.
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7.5 Improper Integrals (page 309)

e Notice: The question is whether the integral blows up, not whether y(z) blows up. fo = dz is OK.

Lots of times you only need to know whether or not the integral converges. This is where the comparison
test comes in. Assuming y(z) is positive, try to show that its unknown integral is smaller than a known

finite integral (or greater than a known divergent integral).

EXAMPLE 3 f 1°° zjf?"idz has 2+cos z between 1 and 3. Therefore 2—*—3‘}’—’ < ;33- Since f 1°° f‘;dz converges
to a finite answer, the original integral must converge. You could have started with 3‘-"—3’—"—5 > 513- This is true,
but it is not helpful! It only shows that the integral is greater than a convergent integral. The greater one could

converge or diverge — this comparison doesn’t tell.

EXAMPLE 4 [~ g_%—dz has j% ~ 2 = —L; for large 2.

~1/2 is infinite). To show a comparison, note -‘% > 35/;“_5 This is because

8 is smaller than 2z beyond our lower limit z = 5. Increasing the denominator to 3z makes the fraction smaller.

We suspect divergence (the area under z

The official reasoning is

0.

°°\/5d$> oo_\/_‘f__dz_ ® _dz 1/2]b

= = lim =
s z+8 J; 3z s 32172 bhe 3z
5. (Problem 7.5.37) What is improper about the area between y = sec z and y = tan z?

The area under the secant graph minus the area under the tangent graph is

n/2 /2 ‘
/ secz dz — / tanz dz = In(sec z + tan x)]o/ + In(cos x)] — oo.
0 0

The separate areas are infinite! However we can subtract before integrating:

f(;r/z (secz —tanz)dz = [In(secz + tanz) + In(cos z)]5/
(In(cos z)(sec z + tan :z:)]g/2 = [In(1 + sin z) 3/2 =In2-Inl1=In2.

This is perfectly correct. The difference of areas comes in Section 8.1.

Read-throughs and selected even-numbered solutions :

An improper integral f b y(z)dz has lower limit a = —co or upper limit b = co or y becomes infinite in the
interval a < z < b. The example f L dz/z3 is improper because b = co. We should study the limit of fl dz/z®
as b — oo. In practice we work directly with —--:z_z] P = f For p > 1 the improper integral f z~Pdz is finite.

For p < 1 the improper integral fo z~Pdz is finite. For y = ¢™® the integral from 0 to oo is 1.

Suppose 0 < u(z) < v(z) for all z. The convergence of [ v(x) dx implies the convergence of [ u(x)dx
The divergence of [ u(z)dz implies the divergence of [ v(z)dz. From —oo to oo, the integral of 1/(e® + e")
converges by comparison with 1/e!. Strictly speaking we split (—oo,00) into (—co, 0) and (0, c0). Changing
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to 1/(e% — e~%) gives divergence, because €X = e X at x = 0. Also [”_dz/sin z diverges by comparison with

J @x/x. The regions left and right of zero don’t cancel because co — oo is not zero.

2 fl di 1 diverges at z = 0 : infinite area

8 f_oo sin z da: is not defined because f: sin z dz = cosa — cos b does not approach a limit as b — oo

and a — —o0

16 ;7 (::_"1’),, = (set u=e® — 1) [;° % which is infinite: diverges at u=0if p > 1,

diverges atu=o0if p<1.

18 fo _Gﬁ < 01 dlz = 1: convergence

24 fo v—-Inzdz < [ /e(—- Inz)dz + fll/e 1dz = [-zlnz + z)o/® + [z]1/e = ¢ + 1 : convergence
(note zlnz — 0 as z — 0)

36 fb £dr = [fIn(1+2%)]% = In(1+6%) — In(1+ a?). As b — oo or as a — —oo (separately!)
there is no limiting value. If a = —b then the answer is zero — but we are not allowed to
connect a and b.

40 The red area in the right figure has an extra unit square (area 1) compared to the red area

on the left.

7 Chapter Review Problems

Review Problems
R1 Why is [ u(z)v(z)dz not equal to ([ u(z)dz)([ v(z)dz)? What formula is correct?

R2 What method of integration would you use for these integrals?
[ zcos(22? + 1)dz [ zcos(2z + 1) [cos?(2z+1)dz [ cos(2z + 1)sin(2z + 1)dz

[ cos®(2z + 1) sin®(2z + 1)dz fcos*(2z + 1)sin®(2z + 1)dz  [cos2zsin3z dz [ C;—L——l?:(gjii) dz

R3 Which eight methods will succeed for these eight integrals?

f z__dr f _dx f dz dz
V3+z? \/+a:3 V3—z2 z?-3
f dz f dz f z dzx z’dz
z34+2z-3 Vzii2z z3-3 z3-3
R4 What is an improper integral? Show by example four ways a definite integral can be improper.
R5 Explain with two pictures the comparison tests for convergence and divergence of improper integrals.
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Drill Problems

D1 f2?Inz dz D2 [ e*sin 2z dz

DS [2VI-Zds D4 o

D5 f l"T: dz D6 J tan® 2z sec? 2z dz
D7 [ee® dx D8 f \/ﬁ

D9 [ sin(lnz) dz D10 fSgt4 4y

D11 [sin"!'y/z dz D12  [cos*2zsin®2z dz
Di1s f“Tg’fW, D14 [ 22438 4y

Evaluate the improper integrals D15 to D20 or show that they diverge.

2 oo
D16 [7/?coszds D16 [ lbzds
D17 [ ze %dz D18  [% z7'fdg

33
D19 fo '('1?‘.?7575
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©o dz
D20 fe z(lnz)372



