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CHAPTER 13 PARTIAL DERIVATIVES 

13.1 Surfaces and Level Curves 

The graph of z = f (x, y) is a surface in xyz space. When f is a linear function, the surface is flat a plane). 
When f = x2 + y2 the surface is curved (a parabola is revolved to make a bowl). When f = x2 + y2 the 
surface is pointed (a cone resting on the origin). These three examples carry you a long way. 

JL 
To visualize a surface we cut through it by planes. Often the cutting planes are horizontal, with the simple 

equation z = c (a constant). This plane meets the surface in a level curve, and the equation of that curve is 
c = f (x, y). The cutting is up at  all different heights c, but we move all the level curves down to the xy plane. 
For the bowl z = x2 + y2 the level curves are c = x2 + y2 (circles). For the cone z = d m the level curves 
are c = d m  (again circles - just square both sides). For the plane z = x + y the level curves are straight 
lines c = x + y (parallel to each other as c changes). 

The collection of level curves in the xy plane is a contour map. If you are climbing on the surface, the map 
tells you two important things: 

1. Which way is up: Perpendicular to the level curve is the steepest direction. 

2. How steep the surface is: Divide the change in c by the distance between level curves. 

A climbing map shows the curves at equal steps of c. The mountain is steeper when the level curves are closer. 

1. Describe the level curves for the saddle surface z = xy. 

The curve xy = 1 is a hyperbola. One branch is in the first quadrant through (1,l). The other branch 
is in the third quadrant through (- 1, - 1). At these points the saddle surface has z = 1. 

The curve xy = - 1 is also a hyperbola. Its two pieces go through (1, -1) and (- 1 , l ) .  At these points the 
surface has z = xy = -1 and it is below the plane z = 0. 

2. How does a maximum of f (x, y) show up on the contour map of level curves? 

- 
0 Think about the top point of the surface. The highest cutting plane just touches that top point. The 

level curve is only a point! When the plane moves lower, it cuts out a curve that goes around the top 
point. So the contour map shows Unear-circlesn closing in on a single maximum point. A minimum 
looks just the same, but the c's decrease as the contour lines close in. 

Read-through8 and  selected even-numbered solutions : 

The graph of z = f (x, Y) is a surface in three-dimensional space. The level curve f (x, y) = 7 lies down in 
the base plane. Above this level curve are all points at height 7 in the surface. The p l ane  z = 7 cuts through 
the surface at those points. The level curves f (x, y) = c are drawn in the x y plane and labeled by c. The family 
of labeled curves is a contour  map. 

For z = f (x, y) = x2 - y2, the equation for a level curve is x2 - y2 = c. This curve is a hyperbola. For 
z = x - y the curves are s t ra ight  lines. Level curves never cross because f(x,y) canno t  equal  t w o  number s  
c and c'. They crowd together when the surface is steep. The curves tighten to a point when f reaches a 
m a x i m u m  or minimum. The steepest direction on a mountain is perpendicular  to the level curve. 

- 1 gives the pair of lines x + y = 1 and x + y = -1; similarly 6 (x + y)2 = 0 gives the line y = -x; (x + y) - 

x + y =  & a n d x + y =  -&; n o  level curve ( x +  y)' = -4. 
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16 f (x, y) = { maximum of x2 + y2 - 1 and zero ) is zero inside the unit circle. 

18 4- = c + 22 gives 4x2 + y2 = c2 + 4cx + 4x2 or y2 = c2 + 4cx. This is a parabola opening to the 

left or right. 

SO Direct approach: xy = ( x l : x z ) ( ~ )  = ~ ( x l y l  + xzy2 + zly2 + ~ y l )  = i(l+ 1 + 2 + 2 1 
= 1 + > 1. Quicker approach: y = $ is concave up (or convex) because y" = 3 is positive. 

4 x 1 ~ 2  

Note for convex functions: Tangent lines below curve, secant line segments above curve! 

13.2 Partial Derivatives (page 479) 

I am sure you are good at taking partial derivatives. They are like ordinary derivatives, when you close your 

eyes to the other variables. As the text says, "Do not treat y aa zero! Treat it as a constant." Just pretend 

that y = 5. That applies to &exy = y exy and & (x2 + x y2) = 22 + y2. 

Remember that is also written f,. The y-derivative of this function is & or fxy. A major point is that 

fxy = fyx. The y-derivative of equals the x-derivative of z. Take f = x2 + xy2 with = 2xy: 

-- a 
a2f  - -(2x+ y2) = 2 y  and -- - -(2xy) = 2y. 

a 2 f  a 
ay ax ay ax ay  ax 

Problem 43 proves this rule fxy = fyx , assuming that both functions are continuous. Here is another example: 

1. The partial derivatives of f (x, y) - exy are f, = yexY and f, = xexy. Find f,,, fxy, fyx,  and fyy. 

f,, is 3 or &(%). This is &(yexy) = y2eZy. Similarly fyy is &(xexy) = x2exy. The mixed 

derivatives are equal as usual: 

a a f  a 
-(-) = -(yexY) = y(xexy) + l(exY) by the product rule ay ax  ay 
a a f  a 

-(-) = %(xeXy) = x(yeXY) + l(exY) by the product rule 
a x  a y  

You must notice that it is a2 f above and ax2 below. We divide A(A f )  by  AX)^. 

2. What does that mean? How is A(Af )  different from (A f )2?  

Start with f (x) . The forward difference A f is f (x + Ax) - f (x) . This is a function of x. So we can 

take its forward difference: 

A(Af )  = Af(x  + Ax) - Af(x)  = [ f ( x  + 2Ax) - f ( x  + Ax)] - [ f ( x  + Ax) - f (x)] 

This is totally different from (A f ) 2  = [ f (x + Ax) - f (x)12. In the limit 3 is totally different from (s)2. 
3. Which third derivatives are equal to f,,,? This is &(fxx)  or &. 

We are taking one y-derivative and two x-derivatives. The order does not matter (for a smooth 
function). Therefore f,,, = f,,, = f,,,. 
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Notice Problems 45 - 52 about limits and continuity for functions f (x, y). This two-variable case is more subtle 

than limits and continuity of f (x). In a course on mathematical analysis this topic would be expanded. In a 

calculus course I believe in completing the definitions and applying them. 

More important in practice are part ial  differential equation. like $ = a x  and 3 = 3 and = 9. 
Those are the one-way wave equation and the two-way wave equation and the heat equation. Problem 42 says 

that if = % then automatically 3 = 3. A one-way wave is a special case of a two-way wave. 

4. Solve Problem 42. Then find f (x, t) that satisfies the 2-way equation but not the 1-way equation. 

Suppose a particular function satisfies ft = f,. Take t-derivatives to get ftt = fZt. Take x-derivatives 

to get ft, = f,, . The mixed derivatives agree for any smooth function: fZt = ft,. Therefore ftt = f,, . 

Example of a 1-way wave: f = (x + t)2. The function f = (x - t ) l  does not satisfy the 1-way equation, 

because f, = 2(x - t )  and ft = -2(x - t). It satisfies the other-way wave equation ft = - f, with a minus 

sign. But this is enough for the 2-way equation because f,, = 2 and ftt = 2. 

In general F (x + t)  solves the one-way equation, G(x - t)  solves the other-way equation, and their sum 

F + G solves the two-way equation. 

Read-through8 and  relected even-numbered rolutionr : 

The pa r t i a l  derivative a f /ay comes from fixing x and moving y. It is the limit of (f (x, y + Ay)- f (x, y)) /Ay.  

If f = e2' sin y then a f /ax = 2eax sin y and a f /ay = e 2 ~  cos y.  If f = (x2 + 3) 'I2 then f, = x/(x2 + y2)112 

and f, = y/(x2 + y2)112. At (xo, yo) the partial derivative f, is the ordinary derivative of the pa r t i a l  function 

f (x, y o )  Similarly fy  comes from f(xo, y).  Those functions are cut out by vertical planes x = xo and y = yo ,  

while the level curves are cut out by horizontal  planes. 

The four second derivatives are f,,, fxy , fyx, fyy . For f = xy they are 0 , 1 , 1 , O .  For f = cos 2x cos 3y they 

are -4 cos2x cosy, 6 s in2x  sin Jy ,  -9 cos2x cos3y. In those examples the derivatives fxy and fyx are the 

same. That is always true when the second derivatives are continuous. At the origin, cos 22 cos 3y is curving 

d o w n  in the x and y directions, while xy goes up in the 45' direction and d o w n  in the -45' direction. 

g X = A  
ax 2+2,9ay ~ + 2 ,  

18 f,, = n(n  - l ) (x  + y)n-2 = f,, = f,, = f,,! 

20 f,, = A 2i 2i' - -2 
(,+i,)- ffi = ffy = -0"' f YY = (~+i,) '  ( x+~Y)=  Note f,, + f,, = 0. 

28  = -v(x) and = u ( ~ ) .  

36 f, = l (%)e-x '14t .  Then f,, = ft = -' -"'I" + &e-x'/4t. 
fi m e  

38 e-m't-n't sin rnx cos ny solves ft = f,, + fyy . Also f = ~ e - ( ~ ' + y ' ) l ~ ~  has ft = fix + fyv = 

(-$ + &L&)~-(Z '+Y' ) /~~.  

50 Along y = rnx the function is 6 -+ 0 (the ratio is near & for small x). But on the parabola y = x2 

the function is & = i. So this function f (x, y) has n o  limit: not continuous at (0,O). 
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13.3 Tangent Planes and Linear Approximations (page 488) 

A smooth curve has tangent lines. The equation of the line uses the derivative (the slope). A smooth surface 

has tangent planes. The equation of the plane uses two partial derivatives f x  and f ,  (two slopes). Compare 

line y - f ( a ) = f J ( a ) ( z - a )  with - f (a ,  b) = f x  (a ,  b )  ( X  - a )  + f ,  (a ,  b) (Y  - b) plane- 

These are linear equations. On the left is y = rnx + constant. On the right is z = M x  + N y  + constant. Linear 

equations give lines in the xy plane, and they give planes in xyz  space. The nice thing is that the first slope 

M = a f / a x  stays completely separate from the second slope N = a f /ay.  
I will follow up that last sentence. Suppose we change a by A x  and b by Ay. The basepoint is (a ,  b) and the 

movement is to (a+ A x ,  b+ A y ) .  Knowing the function f and its derivatives at the basepoint, we can predict the 

function (linear approximation) at the nearby point. In one variable we follow the tangent line to f ( a )  + f J ( a ) A x .  

In two variables we follow the tangent plane to the nearby point: 

We add on two linear corrections, in the x and y directions. Often these formulas are written with x instead of 

a and y instead of b. The movement is from f ( x ,  y) to f ( x  + A x ,  y + A y ) .  The change is A x  f x  + A y  f,. 

1. Estimate the change in f ( x ,  y) = x3 y4 when you move from (1 , l )  to ( 1  + A x ,  1 + A y ) .  

The x-derivative is f x  = 3x2y4 = 3 at the basepoint (1 , l ) .  The y-derivative is f ,  = 4xSy3 = 4 at the 

basepoint. The change A f is approximately f ,  A x  + f,A y. This is 3 A x  + 4Ay:  

On the left, the high powers ( A X ) ~ ( A  y)4 would multiply. But the lowest powers A x  and A y  just add. You 

can see that if you write out ( 1  +  AX)^ and ( 1  + A y)4 and start multiplying: 

( 1  + 3 A x  +  AX)' + ( A X ) ~ ) ( I  + 4 A y  + . . .) = 1 + 3 A x  + 4 A y  + higher terms. 

These higher terms come into the complete Taylor series. The constant and linear terms are the start of 

that series. They give the linear approximation. 

2. Find the equation of the tangent plane to the surface z = xSy4 at ( x ,  y) = ( 1 , l ) .  

The plane is z - 1 = 3 ( x  - 1) + 4 ( y  - 1).  If x - 1 is A x  and y - 1 is A y ,  this is z = 1 + 3 A x  + 4Ay .  Same 

as Question 1. The tangent plane gives the linear approximation! 

Some surfaces do not have "explicit equationsn z = f ( x ,  y). That gives one z for each x and y. A more 

general equation is F ( x ,  y, z )  = 0. An example is the sphere F = x2 + y2 + z2 - 4 = 0.  We could solve to find 

z = 4- and also z = - d m .  These are two surfaces of the type z = f ( x ,  y ) ,  to give the top 
half and bottom half of the sphere. In other examples it is difficult or impossible to solve for z and we really 

want to stay with the "implicit equationn F ( x ,  y, z )  = 0. 

How do you find tangent planes and linear appron'mations for F ( x ,  y, a )  = O? Problem 3 shows by example. 

3. The surface xz  + 2yz - 10 = 0 goes through the point ( x o ,  yo, zo) = (1,2,2).  Find the tangent plane and 
normal vector. Estimate z when x = 1.1 and y = 1.9. 
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Main idea: Go ahead and diferentiate F = xz + 2yz - 10. Not only x and y derivatives, also z : 

aF - -  aF aF 
- 22 = 4 and - = x +  2y = 5 at the basepoint (1,2,2). - z = 2  and - -  a~ a~ a~ 

The tangent plane i r  2(x - 1 )  + 4(y - 2) + 5(z - 2) = 0. The normal vector is N = (2,4,5). Notice how 

F,, F,, and Fz multiply Ax and A y and Az. The total change is A F  which is zero (because F is constant: 

the surface is F = 0). A linear approximation stays on the tangent plane! So if you know x = 1.1 and 

y = 1.9 you can solve for z on the plane: 

2(.1) 4(--1) 
2(1.1- 1) +4(1.9- 2) +5(z  - 2) = 0 gives z = 2 - - - - F x  F Y  

5 5 Fz  F. 
. This is z = zo - -Ax- -Ay. 

I would memorize the tangent plane formula, which is (F,)(x - xo) + (F,)(y - yo) + (FZ)(z - zo) = 0. 

In this example you could solve F = xz + 2yz - 10 = 0 to find z. The explicit equation z = f (x, y) is 

z = &. Its x and y derivatives give the same tangent plane as the x, y, z derivatives of F. 

The last topic in this important section is Newton'r method. It deals with two functions g(x, y) and 

h(x, y). Solving g(x, y) = 0 should give a curve, solving h(x, y) = 0 should give another curve, and solving 

both equations should give the point (or points) where the two curves meet. When the functions are 

complicated - they usually are - we "linearize." Instead of g(x, y) = 0 and h(x, y) = 0 Newton solves 

Those are linear equations for Ax and Ay. We move to the new basepoint (xl,  yl) = (xo + Ax, yo + Ay) 

and start again. Newton's method solves many linear equations instead of g(x, Y) = 0 and h(x, Y) = 0. 

4. Take one Newton step from (so, = (1,2) toward the solution of g = xy - 3 = 0 and h = x + y - 2 = 0. 

e The partial derivatives at the basepoint (1,2) are g, = y = 2 and g, = x = 1 and h, = 1 and h, = 1. 

The functions themselves are g = -1 and h = 1. Newton solves the two linear equations above 

(tangent equations) for Ax and Ay: 

- 1 + 2 A x + A y  = 
O give 

Ax = 2 
The new guess is 

51 = xo + A x  = 3 
l + A x + A y  = 0 Ay = -3 YI = YO + Ay = -1. 

The new point (3, -1) exactly solves h = x + y - 2 = 0. It misses badly on g = xy - 3 = 0. This surprised 

me because the method is usually terrific. Then I tried to solve the equations exactly by algebra. 

Substituting y = 2 - x from the second equation into the first gave x(2 - x) - 3 = 0. This is a quadratic 

x2 - 2x+ 3 = 0. But it has no real solutions! Both roots are complex numbers. Newton never had a chance. 

Read-through8 and aelected euen-numbered solutions : 

The tangent line to y = f (x) is y - yo = ft(x0)(x - x0)  The tangent plane to w = f(x,  y) is w - wo = 

( a f / a ~ ) ~  (x - xo) + (af  /%)o (y - y o )  The normal vector is N = (fx, fy , - 1). For w = x3 + y3 the tangent 

equation at (1,1,2) is w - 2 = 3(x - 1) + 3(y - 1). The normal vector is N = (3,3,  -1). For a sphere, the 

direction of N is out from the origin. 

The surface given implicitly by F(x,  y,z) = c has tangent plane with equation ( a F / a ~ ) ~ ( z  - xo)+ 

( a F / a ) ( y  - y o )  + ( a F / a ~ ) ~ ( z  - zo) = 0. For xyz = 6 at (1,2,3) the tangent plane has the equation 
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6(x- 1)+ 3(y  - 2) + 2(z - 3) = 0. On that plane the differentials satisfy 6dx + 3dy + 2dz = 0. The differ- 

ential of z = f (x,y) is dz = fxdx + fydy. This holds exactly on the tangent plane, while A t  - f xAx  + f y A y  

holds approximately on the surface. The height z = 33; + 7y is more sensitive to a change in y than in x, 

because the partial derivative az /dy  = 7 is larger than d z / a x  = 3. 

-xo) + ( a f / a ~ ) ~ ( yThe linear approximation to f (x, y) is f (xo, yo) + (af / ~ X ) ~ ( X  -yo). This is the same as 

A f M (af /ax)Ax + (af / ay )A  y. The error is of order AX)^ + ( A ~ ) ' .  For f = sin xy the linear approximation 

around (0,O) is fL = 0. We are moving along the t angen t  p l ane  instead of the surface. When the equation is 

given as F(x ,  y, z) = c, the linear approximation is FxAx + FyAy  + F Z A z  = 0. 

Newton's method solves g(x, y) = 0 and h(x, y) = 0 by a l inear  approximation. Starting from x,, y, the 

equations are replaced by gx A x  + gy A y  = -g(xn, yn) and h x A x  + hy A y  = -h(xn, yn). The steps Ax and 

Ay go to the next point ( X ~ + ~ , Y ~ + ~ ) .  Each solution has a basin of a t t r a c t i on .  Those basins are likely to be 

fractals.  

8 N = 87ri + 47rj - k;87r(r - 2) + 47r(h - 2) = V - 87r 

21 2  N1 = 2i + 4j  - k and N2  = 2i + 6j - k give v = I i j4 -1 = 2i + 4k tangent to both surfaces 
1 2  6 -1 

1 4  The direction of N is 2xy2i +2x2yj-k = 8i  + 4j  - k. So the line through (1,2,4) has x = 1+ Bt, y = 2 + 4 t ,  

z = 4 - t .  

1 8  df = yz dx + xz dy + xy dz. 

32  ;AX - Ay = $ and -Ax + = $ give Ax = Ay = -$. The new point is (-1, - I ) ,  an exact solution. 

The point ( 4 ,  4 )  is in the gray band (upper right in Figure 13.11a) or the blue band on the front cover. 

38  A famous fractal shows the three basins of attraction - see almost any book on fractals. Remarkable 

property of the boundaries points between basins: t h e y  t ouch  all  t h r e e  basins! Try to draw 3 regions 

with this property. 

13.4 Directional Derivatives and Gradients 

The partial derivatives a f / a x  and d f /a y are directional derivatives, in special directions. They give the 
slope in directions u = ( 1 , O )  and u = (0, I ) ,  parallel to the x and y axes. From those two partial derivatives 

we can quickly find the derivative in any other direction u = (cos 8, sin 0): 

afdirect ional  der ivat ive DU f = (-)af cos 0 + ( -) sin 0. ax a y  

It makes sense that the slope of the surface z = f (x, y), climbing at  an angle between the x direction and 

y direction, should be a combination of slopes af /ax and a f  ldy.  That slope formula is really a dot product 

be tween the direction vector u and the derivative vector (called the gradient):  

af afgradient = ( - -) direction = (cos 8, sin 8) = u directional derivative = Vf .u.a x 1ay  = V f 
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1. Find the gradient of f (x, y) = 4 s  + y - 7. Find the derivative in the 45' direction, along the line y = x. 

The partial derivatives are fx = 4 and fy = 1. So the gradient is the vector V f = (4 , l ) .  

Along the 45' line y = x, the direction vector is u = (cos 2,  sin 2). This is u = (q, q ) .  The dot 

product V f . u = 4 $ + 1 9 = 5 $ ig Du f , the directional derivative. 

2. Which direction gives the largest value of Du f ?  This is the steepest direction. 

0 The derivative is the dot product of V f = ( 4 , l )  with u = (cos 8, sin 8). A dot product equals the 

length lVf 1 = = JT? times the length lul = 1 times the cosine of the angle between Vf 

and u. To maximize the dot product and maximize that cosine, choose u i n  the same direction ae 

V f .  Make u a unit vector: 

V f  u = - -  
4 1 4 1 17 

- (- -) and Vf .u=4( - )+I ( - )  = - - 
lVfl JI?' Ji5 JIs f i  - fi. 

This is the general rule: The steepest direction is parallel to the gradient V f = (f,, f,). The steepness 

(the slope) is lV f 1 = dm. This is the largest value of Du f .  

3. Find a function f (x,  y) for which the steepest direction is the x direction. 

0 The question is asking for = 0. Then the gradient is (g,  0). It points in the z-direction. The 

maximum slope is d ( ~ ) ~  + 02 which is just 1 2 1. 

The answer is: Don't let f depend on y. Choose f = x or f = ex or any f (x). The slope in the y-direction 

is zero! The steepest slope is in the pure x-direction. At every in-between direction the slope is a mixture 

of and 0. The steepest slope is 1gl with no zero in the mixture. 

V f . u is the directional derivative along a straight line (in the direction u). What if we travel along a curve? 

The value of f (x, y) changes as we travel, and calculus asks how fast it changes. This is an "instantaneous" 

question, a t  a single point on the curved path. At each point the path direction is the tangent direction. So 

replace the fixed vector u by the tangent vector T at that point: Slope of f (x, y) going along path = V f - T. 
The tangent vector T was in Section 12.1. We are given x(t) and y(t) ,  the position as we move along the 

path. The derivative (2,  g )  is the velocity vector v. This is along the tangent direction (parallel to T), but T 

is required to be a unit vector.. So divide v by its length which is the speed ivl = = dsldt : 

The 

how 

4. 

v = (%,$) gives Vf . v =  %%+%%.   his is g. 
V - - - = T  gives Vf - T .  This is  $-$$ = 2. 
IVI < l a / &  

speed is divided out of the slope df Ids. The speed is not divided out of the rate of change df ldt .  One says 

steeply you climb. The other says how fast you climb. 

How steeply do you climb and how fast do you climb on a roller-coaster of height f (x, y) = 22 + y? You 

travel around the circle x = cos 4t, y = sin 4t with velocity v = (-4 sin 4t, 4 cos 4t) and speed Iv 1 = 4. 

The gradient of f = 2x + y is V f = ( 2 , l ) .  The tangent vector is T = IVI = (- sin 4t, cos 4t). 

Slope of path = V f . T = -2 sin 4t + cos 4t Maximum slope &. 

Climbing rate = V f . v = -8 sin 4t + 4 cos 4t Maximum rate 4&. 

How fast you climb = (how steeply you climb) x (how fast you travel). 



Read-through8 and selected even-numbered solutions : 

DUf gives the rate of change of f(x,y) in the direction u. It can be computed from the two deriva- 

tives df/&c and df /tly in the special directions (1,O) and (0,l). In terms of ul,  u2 the formula is DU f = 

fxul +fyu2 This is a dot product of u with the vector (fx, fy), which is called the gradient. For the linear 

function f = ax + by, the gradient is grad f = (a,b) and the directional derivative is Du f = (a,b) .u. 

The gradient Vf = (f,, f,) is not a vector in three dimensions, it is a vector in the base plane. It 

is perpendicular to the level lines. It points in the direction of steepest climb. Its magnitude lgrad f 1 is 

the steepness dm-.For f = x2 + y2 the gradient points out from the origin and the slope in that 

steepest direction is 1(2x, 2y)l = 2r. 

The gradient of f (x, y, z) is (fx, fy, fx). This is different from the gradient on the surface F(x,y, z) = 0, which 

is -(F,/F,)i-(F,/F,)j. Traveling with velocity v on a curved path, the rate of change of f is df ldt = (grad f)  .v. 
When the tangent direction is T, the slope of f is dflds = (grad f)  . T. In a straight direction u, dflds is the 

same as the directional derivative DU f. 

12 In one dimension the gradient of f (x) is $i. The two possible directions are u = i and u = -i. The two 
df dfdirectional derivatives are +z and -a;;.The normal vector N is i -j. 

14 Here f = 2x above the line y = 22 and f = y below that line. The two pieces agree on the line. Then 

grad f = 2i above and grad f = j below. Surprisingly f increases fastest along the line, which is the 

direct ion u = (i + 2j) and gives Du f = &-& 
28 (a) False because f + C has the same gradient as f (b) True because the line direction (1,1,-1) is also the 

normal direction N (c) False because the gradient is in 2 dimensions. 

30 e = tan-' has grad 0 = (&, *) = w.The unit vector in this direction is 

T = (J G ' ~ '- Y  ). T h e n g r a d e - T =  &=:. 
34 The gradient is (2ax + c) i  + (2by + d)j. The figure shows c = 0 and d r; at  the origin. Then b r; $ from 

the gradient a t  (0,l).Then a r; -a  from the gradient at  (2,O).The function - i x 2  + ky2  + Sy has 

hyperbolas opening upwards as level curves. 

44 v = (2t,0)and T = (1,O);grad f = (y ,  z)so = 2ty = 6t and $ = y = 3. 

48 D2 = ( x - I ) ~ +  = 2(x- 1) or = 9.Similarly 2 0 %  = 2 ( y - 2 )  and aD -- y--2.( y - 2)2 has ~ D E  
Then lgrad Dl = (q)2 =+ (G)21. The graph of D is a 45' cone with its vertex at (1,2). 



13.5 The Chain Rule (page 503) 

13.5 The Chain Rule 

Chain Rule 1 On the surface z = g(x, y ) the partial derivatives of f (a)  are % = and % = dz  81 ay - 
z = x2 + y2 gives a bowl. Then f ( z )  = fi = Jw gives a sharp-pointed cone. The slope of the cone 

Check that by directly taking the x-derivative of f ( g ( x ,  y))  = d m ' .  
Chain Rule 2 For z = f ( x ,  y) on the curve x = x( t )  and y = y(t) the t-derivative is 2 = g% + %$. 

This is exactly the climbing rate from the previous section 13.4. 

Chain Rule 3 For z = f ( x ,  y) when x = x( t ,  u )  and y = ~ ( t ,  u )  the t-derivative is = % + %%. 
This combines Rule 1 and Rule 2. The outer function f has two variables x, y as in Rule 2. The inner 

functions x and y have two variables as in Rule 1. So all derivatives are partial derivatives. But notice: 

az  - a z  ax  a z a x  a z a y  
is not -- . The correct rule is - - +-- au a x  a~ a x a u  a y a u  

1. A change in u produces a change in x = tu  and y = t / u .  These produce a change in z = 32 + 2y. Find 

az/au. 

2. When would Rule 3 reduce to Rule 2? The inner functions x and y depend only on t, not u. 

Please read the paradox on page 501. Its main point is: For partial derivatives you must know which 

variable is moving and also which variable is not moving. 

Read-through8 and eeleeted even-numbered solutions : 
The chain rule applies to a function of a function. The x derivative of f (g(x,  y )) is a f / ax  = ( a f  l a g )  (ag/&). 

The y derivative is a f lay  = ( a f / a g )  ( a g / e ) .  The example f = ( x + Y ) ~  has g = x + y.  Because ag/ax = ag/ay  
we know that a f  /ax = a f  l a y .  This partial differential equation is satisfied by any function of x + y. 

Along a path, the derivative of f ( x ( t ) ,  y ( t ) )  is d f  /dt = ( a f / & )  ( d x / d t )  + ( a f / a y ) ( d y / d t ) .  The derivative of 

f ( z ( t ) )  y ( t ) ,  z ( t ) )  is fxxt + fyyt + f Z z t  If f = xy then the chain rule gives df /dt = y d x / d t  + x d y / d t .  That 

is the same as the product rule! When x = ult and y = u2t the path is a straight line. The chain rule for 

f (x, y) gives df /dt = fxul + fyu2. That is the directional derivative Du f .  

The chain rule for f ( x ( t ,  u), y ( t ,  u ) )  is f /at  = ( a f  /ax) (&/a t )  + ( a f  /*) (*/at). We don't write df /dt 

because f also depends o n  u. If x = r cos 8 and y = r sin 8 ,  the variables t ,  u change to r and 8 .  In this case 

a f /ar  = (Elf /ax) cos 8 + ( d f  I*) sin 8 and f /a8 = ( a f  /&) (-r sin 8 )  + ( d f / d y )  ( r  cos 8 ) .  That connects the 

derivatives in rectangular and polar coordinates. The difference between & - / a x  = x/r  and = 1/cos 8 

is because y is constant in the first and 8 is constant in the second. 

With a relation like xyz = 1, the three variables are no t  independent. The derivatives ( a  f / ax ) ,  and 

( a f l a x ) ,  and ( a f / a x )  mean t h a t  y is held constant, and z is constant, and b o t h  are constant. For 
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f = x2 + y2 + z2 with xyz = 1)we compute (af l ax ) ,  from the chain rule a f / h  + ( a f / a y ) ( a y / h ) .  In that 

rule dz /ax  = -1/x 2y from the relation xyz = 1. 

4 f x = L  = A; =x+7y and f y  7fx f y .  

d 
6 $ = + gg is the product rule yadx + x$. In terms of u and v this is $(uv)  = v g  + u g .  

12 (a) f, = 2re2", f,, = 2e2", fee = r2(2i)2e2a8 and f,, + + 3 = 0. Take real parts throughout to find 

the same for r2 cos 28 (and imaginary parts for r2 sin 28). (b) Any function f (rea8) has 

f, = ea8 f'(reiO) and f,, = (eae)' f "(rea8) and fe = irea8 f'(rea8) and fee = i2rea8 f '  + f ". 
Any f (re'" or any f (x + iy) will satisfy the polar or rectangular form of Laplace's equation. 

16 Since = we must find $ = 0. The chain rule gives i s  - 42 = &(et) - &(2et) = 0. 
Y 

32  %=: and then &= - f  % =  -5; =-y. 
40 (a) = 2 x  (b) f = x2 + y2 + (x2 + y2)2 so % = 2 x + 4 x ( x 2  +y2)  

(c) g + 22 = 22 + 2z(2x) = 2x  + 4x(x2+ y2) (d) y is constant for 

13.6 Maxima, Minima, and Saddle Points (page 512) 

A one-variable function f (x) reaches its maximum and minimum at three types of critical points: 

df1.Stationary points where -= 0 2. Rough points 3. Endpoints (possibly at  oo or - 00).
dx 

A two-variable function f (x, Y) has the same three possible types of critical points: 

af af1.Stationary points where -= 0 and -= 0 2. Rough points 3. Boundary points. ax a y  

The stationary points come first. Notice that they involve two equations (both partial derivatives are zero). 

There are two unknowns (the coordinates x and y of the stationary point). The tangent is horizontal as usual, 

but it is a tangent plane to the surface z = f (x, y). 

It is harder to solve two equations than one. And the second derivative test (which was previously f" > 0 

for a minimum and f" < 0 for a maximum) now involves all three derivatives fxx, fyy, and fxy = fyx: 

f x x  > 0Minimum Maximum f3tx < 0 
Y Y > ( f x y ) Z  fxxfyy > (fxy)2 f X X f Y Y  < ( f X Y l 2  

When fix fyy = (fxy)2 the test gives no answer. This is like f"  = O for a one-variable function f (x). 

Our two-variable case really has a 2 by 2 matrix of second derivatives. Its determinant is the critical quantity 

fix fyy - (fZy)'. This pattern continues on to f (x, y, z)  or f (x, y, z, t). Those have 3 by 3 and 4 by 4 matrices 

of second derivatives and we check 3 or 4 determinants. In linear algebra, a positive definite second-derivative 

matrix indicates that the stationary point is a minimum. 

1. (13.6.26) Find the stationary points of f (x, y)  = xy- i x 4  - y4 and decide between m i n ,  max, and saddle. 
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The partial derivatives are f ,  = y - x3 and f y  = x - y3. Set both derivatives to zero: 

y = x3 and x = y3 lead to y = y9. This gives y = 0, 1, or - 1. Then x = y3 gives x = 0, 1, or -1. 

The stationary points are (0,O) and (1,l) and (-1, - 1). The second derivatives are f , ,  = -3x2 and 

f y y  = -3y2 and f,, = 1: 

(0,O) is a saddle point because f , ,  f y y  = (0) (0) is less than ( I ) ~  

(1,l) and (- 1, - 1) are maxima because f , ,  f y y  = (-3) (-3) is greater than ( I ) ~  and f , ,  = -3. 

Solving x = y3 and y = x3 is our example of the two - variable Newton met hod in Section 11.3. This is 

really important in practice. For this function xy - i x 4  - iy4 we found a saddle point and two maximum 

points. The minimum is a t  infinity. This counts as a "boundary pointn. 

2. (This is Problem 13.6.56) Show that a solution to Laplace's equation f , ,  + f y y  = 0 has no maximum or 

minimum stationary points. So where are the maximum and minimum of f (x, y)? 

A maximum requires f , ,  < 0. I t  also requires f y y  < 0. We didn't say that,  but it follows from the 

requirement f,, f y y  > ( f , y ) 2 .  The left side has to be positive, so f , ,  and f y y  must have the same sign. 

If f , ,  + f y ,  = 0 this can't happen; stationary points must be saddle points (or f = constant). A max 

or man is impossible. Those must occur at rough points or boundary pointe. 

Example A f (x, y) = ln(x2 + y2) has a minimum of - m  at  (x, y) = (O,O), since i n0  = -m.  This is a 

rough point because f ,  = is unbounded. You could check Laplace's equation two ways. One is to 
2 

x 2 + y 2  
( z ? ~ y ,  12. Also f y y  = & - (&)2. Add to get zero. The other way is to write compute f , ,  = - - - 

:. Substitute into the polar Laplace f = ln r2 = 2 1n r in polar coordinates. Then f ,  = f and f , ,  = - - 

equation to get f , ,  + ; f ,  + 5 foo = 0. 

Example B f (x, y) = xy satisfies Laplace's equation because f , ,  + f y y  = 0 + 0. The stationary point 

at  the origin cannot be a max or min. It is a typical and famous saddle point: We find f , ,  = 1 and then 

f , ,  f u y  = (0)(0) < ( I ) ~ .  There are no rough points. The min and max must be at boundary points. 

Note: Possibly there are no restrictions on x and y. The boundary is at infinity. Then the rnax and min 

occur out at  infinity. Maximum when x and y go to +oo. Minimum when x -+ + m  and y --+ -a, because 

then xy --, - a .  (Also max when x and y go to - w .  Also min when x -+ -a and y -+ +a). 

Suppose x and y are restricted to sta.y in the square 1 5 x 5 2 and 1 5 y 5 2. Then the rnax and min 

of xy occur on the boundary of the equare. Maximum at  x = y = 2. Minimum at  x = y = 1. In a way 

those are "rough points of the boundary," because they are sharp corners. 

Suppose x and y are restricted to stay in the unit circle x = cost and y = sin t. The maximum of xy is on 

the boundary (where xy = cost sin t). The circle has no rough points. The maximum is a t  the 45' angle 

t = 2 (also at  t = F). At those points xy = cos 5 sin 2 = $. To emphasize again: This maximum occurred 

on the boundary of the circle. 
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Finally we call attention to the Taylor Series for a function f (x, y). The text chose (0,O) as basepoint. The 

whole idea is to match each derivative f (x, y) at the basepoint by one term in the Taylor series. 

Since has derivative equal to 1, multiply this standard power by the required derivative to find the correct 

term in the Taylor Series. 

When the basepoint moves to (xo, yo), change from xnym to (x - xo)"(y - yo)m. Divide by the same n!m! 

3. Find the Taylor series of f (x, y) = ex-, with (0,0) as the basepoint. Notice f (x, y) = ex times e-,. 

Methodl: Multiply theseriesforex ande-Y toget ex-,= ( l + z + ~ ~ ~ + . . . ) ( l - y + ~  2! y .) = 
I + % - y + ; x 2 - x y + . -  

0 Method 2: Substitute x - y directly into the series to get ex-, = 1 + (x - y) + &(x - y)' + - - .  . 

0 Method 3: (general method): 'ind all the derivatives of f (x, y) = ex-, at  the basepoint (0,0): 

;:!xy + + . Remember that 01 = 1. Then the Taylor Series is & + x + & y + & x2 + - 

Read-t hroughs and selected euen-numbered solutions : 

A minimum occurs at a s tat ionary point (where f, = f, = 0) or a rough  point (no derivative) or a 

boundary  point. Since f = x2 - xy + 2y has f, = 2x  - y and f, = 2 - x, the stationary point is x = 2, y = 4. 

This is not a minimum, because j decreases when y = 22 increases. 

The minimum of d2 = (x - xl)' + (y - yl)' occurs at the rough point (XI, y l )  The graph of d is a cone and 

grad d is a un i t  vector that points o u t  f rom (XI, y l )  The graph of f = Ixyl touches bottom along the lines x 

= 0 and y = 0. Those are 'rough linesn because the derivative does n o t  exist. The maximum of d and f 

must occur on the boundary  of the allowed region because it doesn't occur inside. 

When the boundary curve is x = x(t), y = y(t), the derivative of f (x, y) along the boundary is fxxt + fyyt  

(chain rule). If f = x2 + 2 3  and the boundary is x = cost, y = sin t, then dfldt = 2 s in  t cos t. It is zero at 

the points t = O,r /2 ,s ,  3 ~ 1 2 .  The maximum is at ( 0 , f  1) and the minimum is at (f 1 , O ) .  Inside the circle f 

has an absolute minimum at (0,O). 

To separate maximum from minimum from saddle point ,  compute the second derivatives at a s tat ionary 
2 point. The tests for a minimum are f n  > 0 and fXXfYY > fv . The tests for a maximum are ficx < 0 and 

2 fnfyy > fxy In case oe < b2 or fx, f, < f& , we have a saddle point.  At d l  points these tests decide 

between concave up and concave down and 'indefiniten. For f = 8x2 - 6xy + y2, the origin is a saddle  point. 

The signs of f at (1,O) and (1,3) are + and -. 

1 2  1 2  The Taylor series for f (x, y) begins with the terms f (0 ,O)  + xf- + yfy + sx f= + xyfxy + s y  fw . The 

coefficient of xnym is an+mf/ibPaym(O, 0) divided by  nlm! To find a stationary point numerically, use 



Newton's method or steepest descent. 

18 Volume = xyz = xy(1 - 32 -  2y) = xy-  3x2 - 2xy2;Vx = y - 6 6 -  2y2 and Vy = xz4xy ;  at  (0, i , O )  and 
7 ( i , O ,  0) and (0,0,1) the volume is V = 0 (minimum); a t  (&, g, z) the volume is V = -m (mazimum) 

22 % = 2 x + 2 a n d  % = 2 y + 4  . ( a) Stationary point (- 1, -2) yields fmin = -5. (b) On the boundary y = 0 

the minimum of x2 + 22 is -1 at (-1,0) (c) On the boundary x 2 0, y > 0 the minimum is 0 at (0,O). 

2 8 d l = x , d 2 = d 3 = ~ o Z + 1 , ~ ( x + 2 J ~ ) = 1 +  J- 2(x-') = 0 when (1 - x ) ~  + 1 = 4(x - I ) ~  

or 1 - x = 2 or x = 1 - From that point to (1,l) the line goes up 1 and across a 60' angle fi &' 
with the horizontal that confirms three 120' angles. 

34 From the point C = (0, -4) the lines to (- 1 , O )  and ( 1 , O )  make a 60' angle. C is the center of the circle 

x2 + (y - fi)2 = 4 through those two points. From any point on that circle, the lines to ( - 1 , O )  and (1 ,O)  

make an angle of 2 x 60' = 120'. Theorem from geometry: angle from circle = 2 x angle from center. 
n+ m 1 2 1 44 &(xey) = xeY for n = 0, eY for n = 1, zero for n > 1. Taylor series xeY = x + xy + zxy + %xy3 + 

k2 aaf 50 f ( X  + h, Y + k) f (x, Y) + h g  (x,  Y) + kg (x, Y)  + $ (x, y) + hk%(x, y) + ay. (x, Y) 
58 A house costs p ,  a yacht costs p : $ f (x, -) = $$ + +(-p) = 0 gives -= 9 = -e. ay q ax / ay 

13.7 Constraints and Lagrange Multipliers (page 519) 

In reality, a constraint g(x, y) = k is very common. The point (x, y) is restricted to this curve, when we are 

minimizing or maximizing f (x, y). (Not to the inside of the curve, but right on the curve.) It is like looking for 

a maximum at  a boundary point. The great difficulty is that we lose the equations = 0 and = 0. ay 
The great success of Lagrange multipliers is to bring back the usual equations "x derivative equals zeron 

and ' y derivative equals zero." But these are not fx  and fy . We must account for the constraint g(x, y) = k. 

The idea that works is to subtract an unknown multiple X times g(x, y) - k. Now set derivatives to zero: 

The text explains the reasoning that leads to these equations. Here we solve them for x, y, and A. That locates 

the constrained maximum or rninirnum. 

1. (This is Problem 13.7.6) Maximize f (x, y) = x + y subject to g(x, y) = x'13y2~3 = 1. That is a special case 

of the Cobb-Douglas constraint: x " ~ ' - ~  = k. 

f, = Xg, is 1 = 3 and fv = Xgy is 1 = ~ ( ~ x ' / ~ y - ' / ~ ) .  The ,onStraint is 1 = x1/3y2/3. 

Square the second equation and multiply by the first to get 1 = (?)'($) or ($)3  = a or * 3 = 4-'I3. Then 

divide the constraint by the first equation to get 1 = f x  or x = $ = 4-'I3. Divide the constraint by the 

second equation to get 1 = & or y = = 2 .--'I3. The constrained maximum is f = z + y = 3 - 4-'I3. 

2. (This is Problem 13.7.22 and also Problem 13.7.8 with a twist. It gives the shortest distance to a plane.) 

Minimize f (x, y,  z)  = z2 + y2 + t2 with the constraint g(z, y, z) = ax + by + cz = d. 
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Now we have three variables z, y, a (also X for the constraint). The method is the same: 

f, = Xf, is 22 = Xa f, = Xg, is 2y=  Xb f, = Xg, is 22 = Xc. 

Put z = ?XU and y = i X b  and z = iXc in the constraint to get ?X(a2 + b2 + c2) = d.  That yields A. 

The constrained minimum is z2 + d + z2 = (a2 + b2 + c2) = +$+ca . 
Id 'The shortest distance to the plane is the square root aa+ba+ca .  This agrees with the formula fi from 

Section11.2,wherethenormalvectortotheplanewasN=ai+bj+ck.  , 

The text explains how to handle two constraints g(x, y, z) = kl and h(z, y, a) = kz. There are two Lagrange 

multipliers X1 and X2. The text also explains inequality constraints g(z, Y) 5 k. The point (z, y) is either on  the 

boundary where g(z, y) = k or it is inside where g(z, y) < k. We are back to our old problem: 

The minimum of f (z, y) may be at a boundary point. Using Lagrange multipliers we find X > 0. 

The minimum of f (z, y) may be at a stationary point. Using Lagrange multipliers we find X = 0. 

The second case has an inside minimum. The equation f, = Xg, becomes f, = 0. Similarly f, = 0. Lagrange is 

giving us one unified way to handle stationary points (inside) and boundary points. Rough points are handled 

separately. Problems 15-18 develop part of the theory behind A. I am most proud of including what calculus 

authors seldom attempt - the meaning o f  X. It is the derivative of fmin with respect to k. Thus X measures the 

sensitivity of the answer to a change i n  the constraint. 

This section is not easy but it is really important. Remember it when you need it. 

Read-through8 and selected even-numbered solutions : 

A restriction g(z, y) = k is called a constraint.  The minimiaing equations for f (z, y) subject to g = k are 

df/& = Xag/ax, a f / e  = Xdg/dy, and g = k. The number X is the Lagrange multiplier. Geometrically, grad 

f is parallel to grad g at the minimum. That is because the level curve f = fmin is tangent  to the constraint 

curve g = k. The number X turns out to be the derivative of fmin with respect to k. The Lagrange function is 
L = f(x,  y )  - X(g(x, y )  -k) and the three equations for z, y, X are a L / k  = 0 and aL/ay  = 0 and aL/BX = 0. 

To minimize f = z2 - y subject to g = z - y = 0, the three equations for z ,  y, X are 2x  = A, -1 = -A, 
1 1x -y = 0. The solution is x = 2 , y  = 2 ,X = 1.In this example the curve f (z, y) = fmin = --1is a parabola

4 
which is tangent  to the line g = 0 at (zmill, ymin). 

With two constraints g(z,y,z) = kl and h(z,y,z) = k2 there are t w o  multipliers Xl andX2. 
The five unknowns are x , y ,  z, X I ,  and X2. The five equations are f x  = Xlgx + X2hx,fy = Xlgy + X2hx, 
fz = Xlgz + X2hz,g = 0, and h = 0. The level surface f = fInin is tangent  to the curve where g = kl and 

h = k2. Then grad f is perpendicular to this curve, and so are grad g and g r a d  h. With nine variables and 

six constraints, there will be six multipliers and eventually 15 equations. If a constraint is an inequality g 5 k, 

then its multiplier must satisfy X 5 0 at a minimum. 

2 z2 + y2 = 1and 2zy = X(2s) and z2 = X(2y) yield 2X2 + X2 = 1. Then X = 2 gives z,, = A*, 

2 3 Also XYmax = $,fmax = 4.= -& gives fnlin = -a@ 
6 

9 .  
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18 f = 2%+ y = 1001 at the point x = 1000, y = -999. The Lagrange equations are 2 = X and 1= X 
(no solution). Linear functions with linear constraints generally have no maximum. 

2 0 ( a )  y z = X , x ~ = X , x y = X , a n d x + y + z = k g i v e x = y = z = ~ a n d X = ~3 (b) V m a = (!p 
so aV,,/ak = k2 /9  (which is A!) (c) Approximate AV = X times Ak = J$(111- 108) = 3888 in3. 

Exact AV = ( y ) 3  - (y)3= 3677 in3. 

26 Reasoning: By increasing k, more points satisfy the constraints. More points are available to minimize f. 

Therefore fmin goes down. 
28 A = O when h > k (not h = k )  at the minimum. Reasoning: An increase in k leaves the same minimum. 

Therefore fmin is unchanged. Therefore X = dfmin/dk is zero. 

Chapter Review Problems 

Graph Problems 

G I  Draw the level curves of the function f (x, y) = y - x. Describe the surface z = y - x. 

6 2  Draw the level curves of f (x, y) = 5.Label the curve through (3,3). Which points (x, t ~ )are not on 
any level curve? The surface has an infinite crack like an asymptote. 

Computing Problems 

C 1  Set up Newton's method to give two equations for Ax and Ay when the original equations are y = x5 
and x = y5. Start from various points (xo, yo) to see which solutions Newton converges to. Compare the 
basins of attraction to Figure 13.3 and the front cover of this Guide. 

Review Problems 

For f (x, y) = xnym find the partial derivatives f,, fy, f,,, f,,, fy,, and fyy. 

If z(x, y) is defined implicitly by F(x,  y, a)  = xy - yz + xz = 0, find az /ax  and &/ay. 

Suppose z is a function of x/y. From z = f (sly),  show that x 2  + ye= 0. 

Write down a formula for the linear approximation to z = f (x, y) around the origin. If f (s, y) = 9 + zy 
show that the linear approximation at (1,l) gives f M 11while the correct value is 10. 

Find the gradient vector for the function f (x, y) = xy2. How is the direction of the gradient at the point 
z= 1,y = 2 related to the level curve xy2 = 4? 

Find the gradient vector in three dimensions for the function F(x,  y, z) = z - xZy2. How is the direction 
of the gradient related to the surface z = zZy2? 

Give a chain rule for df /dt when f = f (x, y, z) and x, y, z are all functions of t. 

Find the maximum value of f (x, y) = x + 2y - xZ+ xy - 2 3 .  

The minimum of x2 + y2 occurs on the boundary of the region R (not inside) for which regions? 

To minimize x2 + Y2 on the line x + 3y = k, introduce a Lagrange multiplier X and solve the three 
equations for x, y, A. Check that the derivative dfmin /dk equals A. 
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Drill Problems 

If z = In show that x g  + = 1 and z,, + z,, = 0 except at -. 

The equation of the tangent plane to z = x2 + y3 at (1,1,2) is -. 

The normal vector to the surface xyz2 = 1 at (1,1,1) is N = -. 
The linear approximation to x2 + y2 near the basepoint (1,2) is -. 
Find the directional derivative of f ( x ,  y) = xe' at the point (2,2) in the 45' direction y = x. What is u? 
Compare with the ordinary derivative of f ( x )= xex at  x = 2. 

What is the steepest slope on the plane z = x + 2y? Which direction is steepest? 

Fkom the chain rule for f (z,y) = x# with x = u + v and y = uu compute 2 at u = 2, u = 3. Check by 
taking the derivative of ( u+ u)  (uu) '. 
What equations do you solve to find stationary points of f ( x ,  y)? What is the tangent plane at those 
points? How do you know from f,, , f,,,and f,, whether you have a saddle point? 

Find two functions f ( x , y) that have af / a x  = af / a y  at all points. Which is the steepest direction on 
the surface z = f ( x ,  y)? Which is the level direction? 

I f  x = r cos 8 and y = r sin 8 compute the determinant J = 

If r = and 8 = tan-' f compute the determinant J* = 1 $: :$;1 = $. 


