15.1 Vector Fields (page 554)

CHAPTER 15 VECTOR CALCULUS

15.1 Vector Fields (page 554)

A vector field assigns a vector to each point (z, y) or (z, y, 2). In two dimensions F(z, y) = M(x, y)i+N(x, y)i.
An example is the position field R = x i +y j(+3 k). Its magnitude is |R| = r and its direction is out from the
origin. It is the gradient field for f = %—(x2 + yz). The level curves are circles, and they are perpendicular
to the vectors R.

Reversing this picture, the spin field is 8 = —y i +x j. Its magnitude is |S| = r and its direction is around
the origin. It is not a gradient field, because no function has 8f/3z = —y and 8f/8y = x. S is the velocity
field for flow going around the origin. The streamlines or field lines or integral curves are circles. The flow
field pV gives the rate at which mass is moved by the flow.

A gravity field from the origin is proportional to F = R/r‘.’ which has |[F| =1 /r2. This is Newton’s inverse
square law. It is a gradient field, with potential f = 1/r. The equipotential curves f(z,y) = ¢ are circles. They
are perpendicular to the field lines which are rays. This illustrates that the gradient of a function f(z,y) is
perpendicular to its level curves.

The velocity field y i + z j is the gradient of f = xy. Its streamlines are hyperbolas. The slope dy/dz of a
streamline equals the ratio N/M of velocity components. The field is tangent to the streamlines. Drop a leaf
onto the flow, and it goes along a streamline.

1 f(z,y)=z+2y 8 f(z,y) =sin(z +y) 5 f(z,y) = In(z® + y*) =2Inr

TF=xyi+ %j, f(z,y) = ’—;ﬂ 9 %ﬁ- =0 so f cannot depend on z; streamlines are vertical (y = constant)
11 F=3i+] 18 F=i+2yj 15 F=2zi—-2yj 1TF=¢e*Vi—e"Vj

19 L=-Ly=-2+4C 2P =-%24y2=C 28%-= 'f;” ==%z2+y*=C 25 parallel
27F=22+% 20F = =2MC(zi+yj) - o BMG (2 1) i+yJ)

31F=3§iyi—32ézj 88:—;‘=§;‘3=—%;%=\/J—_3=2

85 %ﬁ- = %Eg: = %f’r—‘; 5'5 = %E'f;f(r) = C gives circles

37 T; F (no equipotentials); T; F (not multiple of zi + yj + 2k)
89 F and F +i and 2F have the same streamlines (different velocities) and equipotentials (different potentials).
But if f is given, F must be grad f.

Answers 2 - 8 includes extra information about streamlines.

2 zi + j is the gradient of f(z,y) = 1,2 y, which has parabolas z? + y = ¢ as equipotentials (they open
down). The streamlines solve dy/dz = 1/z (this is N/M). So y = Inz + C gives the streamlines.

4 i/y — zj/y? is the gradient of f(z,y) = x/y, which has rays z/y = C as equipotentials (compare Figure 13.2;
the axis y = 0 is omitted). The streamlines solve dy/dz = N/M = —z/y. So y dy = —z dz and the
streamlines are y2 +x2 = constant (circles).

8 z2i+y?j is the gradient of f(z,y) = %(x8 +y3), which has closed curves z%+y® = constant as equipotentials.
The streamlines solve dy/dz = y2/z2 or dy/y? = dz/z? or y~1 = x~1 4 constant.

8 The potential can be f(z,y) =x,/y. Then the field is Vf = /yi + 27j/ VY- The equipotentials are curves
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15.2 Line Integrals (page 562)

z,/y = C or y = C?/z%. The streamlines solve dy/dz = N/M = z/2y so 2y dy = z dz or y2 - %xz =c.
10 If -g% = —y then f = —yx+ any function C(y). In this case % = ~-x+ %% which can’t give % =z
12 -g-:f = 1and %{I— = —8; F =i — 3j has parallel lines z — 3y = ¢ as equipotentials.
14 % =2x-2and %5 = 2y;F = (2z — 2)i + 2yj leads to circles (z — 1)2 + y? = ¢ around the center (1,0).
16 %5 = eX cosy and %'yL = —eX sin y; F = ¢*(cos yi — sin yj) leads to curves ¢* cosy = ¢ which stay inside
a strip like |y| < §. (They come in along the top, turn near the y axis, and leave along the bottom.)
18 %’E = 3 and %5 = ,l‘; F=-%i+ i‘j has the rays £ = ¢ as equipotentials (omit the axis z = 0).
20 % =z gives y = %xz + C (parabolas). 22 % = —Z gives ¥2 +x2 = C (circles).
24 % = % gives y = %x + C (parallel lines).
26 f(z,y) = % In(x2 +y%)=In v/x2 + y2. This comes from 3 = gz or f=[ 5
28 The gradient 3z% + 3y?j is perpendicular. For unit length take F (or V) as (x2i +y2j)//x% + y4.
30 The field is a multiple of i + j. To have speed 4 take F (or V) as v/8(i + j).
82 From the gradient of y — 22, F must be —2xi + j (or this is —F).
34 The slope %’z‘ is —fx/fy from the first equation. The field is f.i+ f,j so this slope is —~M/N. The product
with the streamline slope N/M is —1, so level curves are perpendicular to streamlines.
36 F is the gradient of f = ax? + bxy + $cy2. The equipotentials are ellipses if ac > b and hyperbolas
if ac < b2. (If ac = b2 we get straight lines.)
40 (a) R+ S = (z — y)i + (y + z)j has magnitude v/2 r. (b) The magnitude is now /2 (difference of
perpendicular unit vectors). (c) The direction stays parallel to i + j (at 45°).
(d) yi is a shear field, pointing in the z direction and growing in the y direction.

15.2 Line Integrals (page 562)

Work is the integral of F - dR. Here F is the force and R is the position. The dot product finds the
component of F in the direction of movement dR. = dz i+ dy j. The straight path (z,y) = (t,2t) goes from (0,0)
at t =0 to (1,2) at t = 1 with dR = dt i + 2dtj.

Another form of dR. is Tds, where T is the unit tangent vector to the path and the arc length has ds =
\/(d.x/di:)2 + (dy/dt)2. For the path (¢,2t), the unit vector T is (i + 2j)/v/56 and ds = v/5dt. For F = 3i + j,
F - T ds is still 5dt. This F is the gradient of f = 3x +y. The change in f = 3z + y from (0,0) to (1,2) is 5.

When F = grad f, the dot product F - dR is (3f/3z)dz + (8f /3y)dy = df. The work integral from P to Q
is [ df = £(Q) — f(P). In this case the work depends on the endpoints but not on the path. Around a closed
path the work is zero. The field is called conservative. F = (1 + y) i + z j is the gradient of f = x + xy. The
work from (0,0) to (1,2) is 8, the change in potential.

For the spin field S = —y i +x j, the work does depend on the path. The path (z,y) = (3cost,3sint) is a
circle with 8-dR = —y dx + x dy = 9 dt. The work is 18« around the complete circle. Formally [ g(z, y)ds is
the limit of the sum }_ g(x;,y;) As;.

The four equivalent properties of a conservative field F = Mi+ Nj are A: zero work around closed paths,
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15.2 Line Integrals (page 562)

B: work depends only on endpoints, C: gradient field, D: dM /3y = dN/3z. Test D is passed by F =
(y + 1)i+ zj. The work [ F dR around the circle (cos?,sin t) is sero. The work on the upper semicircle equals
the work on the lower semicircle (clockwise). This field is the gradient of f = x + Xy, so the work to (—1,0)
is —1 starting from (0,0).

1[IV 2dt =5 fp2dt=2 8 [yV2dt+[l1-(2—t)dt="2 +1

5 f:”(—S sin t)dt = O (gradient field); f:" —9sin’t dt = —9x = — area

7 No, zy j is not a gradient field; take line z = ¢,y =t from (0,0) to (1,1) and [ ¢3dt # 3
9 No, for a circle (2#7)2 # 0% + o2 11 f=z+ 142 £(0,1) - f(1,0) = -1

18 1= 3 £0,1) - F(L0) =0 18 f=r =/ (0,1) - f(1,0)=0
17 Gradlent for n = 2; after calculatlon y - % =832

19 z = acost,z = asint,ds =a dt, M = fo (a+asint)adt—21ra2
ZIz—acost,y—asmtda—adtM f a® cos? t dt = ma®, (%, §) = (0,0) by symmetry

28T = 2141241= ‘/—‘i%,r 3zi+4j=6ti+4j,ds =2V1+t2dt,F-Tds = (6ti+4j)- (%)2\/1+t2dt=
20t dt; F -dR. = (6ti + 4j) - (2 dti + 2¢ dt ) = 20¢ dt; work = [ 20t dt = 30

25 Ifﬂ%},le = %ﬂ then M = ay + b, N = az + ¢, constants a, b, ¢

27 F = 4aj (work = 4 from (1,0) up to (1,1)) 20 f=[z—2y|Go) =1  S1f= [zy’]‘(‘,;;; =1

88 Not conservative; [, (i — t§) ~(dt i+ dt j) = [0 dt =0; fol(tzi —t§) ~(dt i+ 2t dt j) = [y —t2dt = -3

35——aa:,a——2z+b s0 a = 2, b is arbitrary 7——2y¢ ==F;,f__y2e—=
39‘”‘—:-,%" N f=r=1/22+y? = |zi+yj|
41F=(z—-y)x+(z+y)j ha.s"?, =—1,‘?,I:—1,nof 438 271;0;0

2 Note ds = Vsin®t + cos? t dt = dt. Then [z ds= fo’rlzcost dt=1and [zyds= foﬂlzsintcost dt = %—
4 Around the square 0 < z,y < 3, f;) y dz = —9 along the top (backwards) and f: —z dy = —9 up the
right side. All other integrals are zero: answer —18. By Section 15.3 this integral is always —2 X area.
6 [ 42dt = [ ds = arc length = 6.
8 Yes The field zi is the gradient of f = 222, Here M = z and N = 00 we have [J Mdz+Ndy = f(Q)— f(P).
More directly: up and down movement has no effect on [ z dz.
10 Not much. Certainly the limit of £{As)? is zero.
12 4¥ = 0 and ¥ = 1; not conservative, take straight path z=1—¢t,y=¢: [F-dR= [ydz+dy=
Jo t(—dt) +dt = 4.
14 9N = M and F is the gradient of f = ze?. Then [F-dR = f(Q) — f(P) = —1.
16 "N # 2M ,not conservative, choose straight path z = 1—t,y = ¢: f—-yzdz+zzdy = [2dt+(1-t)%dt = %

R; has M = @y and %— = —zny(z? +y2) (/2)-1_ This agrees with 2 N 50 -B'— is a

' gradient field for all n. The potential is f = —2——— orf=Inr when n=
20 The semicircle has z = acost,y = asint,ds = adt,0 < ¢ < 7. The mass is M J pds = fpadt parx.
The moment is M, = [ py ds = [ pa®sint dt = 2pa®. Then z = 0 (by symmetry) and § = —2‘—‘-’- s
22 (a) For a gradient field [ F - dR = f(Q) — f(P). Here Q = (1,1,1) and P = (0 0,0) so f(Q) f(P) = 2.
(b) f Mdz + Ndy + Pdz = [t3dt — t(2t dt) + t3(3t%dt) = L
24 P =0 means g{_ =0.So fis f(z,y). So M = Q-L and N = QL cannot depend on 2. :
26 (a) [y3dz + 3zy2dy fo (yt)*(=z dt) + 3a:t(yt)2(ydt) = xyS. Then —; = y° and aW = 3zy? (conservative).

(b) W = fo (zt)3(=z dt) + 3(yt)(zt)?(y dt) = z(x + 3y2x2). But W + M (not conserva.tlve)
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15.3 Green’s Theorem (page 571)

2 2
()W = fol 2 (zdt) + Ly dt) = Ky_ + %= But 2% £ M (not conservative).
@ w= fol e ¥V(z dt +y dt) = ¢*+Y — 1. Then Z¥ = ¢*+¥ and % = ¢**¥ (conservative).
28 F = 2% on the circle z = cost,y =sint has [F-dR = [" cos? t(cost dt) = 0.
30 [ z2dy = [; t%dt = § but [ ¢3(2t dt) = 1.
32 4¥ # 2M (not comservative): [ 2%y dz + zyPdy = Ji 2t%dt = % but [y £2(£2)dt + ¢(£2)2 (2t dt) = %%
34 The potential is f = 1In(x? +y2 + 1). Then f(1,1) - £(0,0) = iIn 5.
36 fol —t2(—2¢ dt) + (1 — t2)(2t dt) = 1 (as before). On the quarter-circle ending at t = % :
0"/‘(— sin 2t) (—2ein 2¢ dt) + (cos 2t)(2cos 2t dt) = 2% = § as before.
38 IV _ 9(;% = —2ye® — 2ye® # 0. No potential f(z,y).
= it aM
40F = #ﬂf has 2 3 2M
42 ¥ = % if and only if b = c. Then f(z,y) = }az? + bzy + Ldy?.
44 True because [ F - dR = [ y dz. False because F = yi is not conservative. (The area underneath
depends on the curve.) True because the area is x (and [y dz = f:” gin¢(sin¢ dt) = x.)

15.3 Green’s Theorem (page 571)

The work integral § M dz + N dy equals the double integral [f(Nx — My)dxdy by Green’s Theo-
rem. For F = 3i + 4j the work is gero. For F = xj and —yi the work equals the area of R. When
M = 8f/dz and N = 3f/dy, the double integral is zero because fxy = fyx. The line integral is sero because
f(Q) = f(P) when Q = P (closed curve). An example is F =y i + x j. The direction on C is counterclock-
wise around the outside and clockwise around the boundary of a hole. If R is broken into very simple pieces
with crosscuts between them, the integrals of M dx + N dy cancel along the crosscuts.

Test D for gradient fields is 9M/dy = AN/3x. A field that passes this test has { F - dJR = 0. There is a
solution to f; = M and f, = N. Then df = M dz+ N dy is an exact differential. The spin field S/r? passes test
D except at r = 0. Its potential f = § increases by 2x going around the origin. The integral [f (N, — M,)dz dy
is not gero but 2x.

The flow form of Green’s Theorem is fc M dy — N dx = ) JRr (Mx + Ny)dx dy. The normal vector in F-nds
points out across C and |n| = 1 and n ds equals dy i — dz j. The divergence of Mi+ Nj is Mx + Ny. For F =
zi the double integral is [f 1 dt = area. There is a source. For F = y i the divergence is zero. The divergence
of R/r? is gero except at r = 0. This field has a point source.

A field with no source has properties E = gero flux through C, F = equal flux across all paths
from P to Q, G = existence of stream function, H= zero divergence. The stream function g satisfies
the equations 3g/dy = M and 9g/3x = —N. Then dM/3z + AN/dy = 0 because 3%g/dzdy = azg/ay ox.
The example F = yi has g = %yz. There is not a potential function. The example F = zi — yj has g =
xy and also f = %xz - %yz. This f satisfies Laplace’s equation fxx + fyy = 0, because the field F is both
conservative and source-free. The functions f and g are connected by the Cauchy-Riemann equations
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15.3 Green’s Theorem (page 571)

8f/3z = 8g/dy and 3f /0y = —3g/dx.

1 fg"(acost)acost dt = na% N, — My = 1, [ [ dz dy = area na?
8 [ zds+ [ 2dz=0,N,— M, =0,[[0dzdy=0
5 [22ydz = ["(acost)*(a sint)(-—asint dt) = —% [27(sin 2t)2dt = — 7%,

N, - My = -2, [[(-2%)dz dy = f f—r coszﬂrdrdﬁ——ffi
7f:z:dy—ydz:fo"(coszt+sin2t)dt—r,ff(l+1)dzdy=2(a_rea)=,r;fzzdy_zydx=%+1;
Jo Jo(2z +2)dzdy =3

l?’l’
920

11 [F - dR = 0 around any loop; F = i+ ¥j and [F-dR = foz’r[—sintcost+sintcost]dt =
%f‘;iz 8N gives [[0dz dy
13 z = cos 2t,y = sin 2t, ¢t from O to 2; f:" ~2sin® 2t dt = —~2x = —2 (area);
02 T —2dt = —4x = —2 times Example 7
15 [ Mdy — Ndz = [" 2sintcost dt = 0; [ [ (M, + Ny)dz dy = [[0dz dy =0
1TM=2N=1¥ [ Mdy—Ndz= 02"(<:oszt+sin2 t)dt = 2m; [ [ (M, + N,)dz dy = ff(;_l-—’;‘,l+%—}:—)dz dy =
[[ldzdy=[[drdf=2nr
19 [ Mdy— Ndz = [ —2?ydz = [{ —2?(1-z)dz = L; [] [y ¥ sPdzdy =%
21 [[(M, + Ny)dz dy = [ [ div F dz dy = O between the circles
23 Work: fadz+bdy= ff(%z- - -g—;)dz dy; Flux: same integral
25 g = tan"!(¥£) = 6 is undefined at (0,0) 27 Test My = N, : z%dz + y?dy is exact = d(3z° + $y°)
29 divF =2y — 2y—0 g = zy? 81divF =2z+2y;nog 83 divF =0;9g=¢€"siny
35 divF =0;9=
3TN, — M, = 2:1:, —6zy,0,2z — 2y,0,—2¢"*¥; in 81 and 88 f = 1(z® + y®) and f = e®cosy
39 F = (322 — 3y?)i — 6zy j;divF =0 41 f = z* — 62%y% + y4; g = 42y — 42y
43 F = e¢*cosyi—e*siny j;g=e"siny
45 N = f(z), [ Mdz + Ndy = fol f(l)dy+f1() f(0)dy = f(1) = £(0); [ f (N2 — My)dz dy =

[f %dz dy = 01 515(12 (Fundamental Theorem of Calculus)

(3cos* tsin? ¢t + 3sin* tcos? t)dt = L 2" 3cos? tsin® tdt = 3T (see Answer 5)

2 fz ydy= f a? cos t(asmt)(acost dt)=0;M =0,N = 2%y, [ [ 2zy dz dy =
fo 2rcos f(rsinf)rdr df =
4 fydz:folt(—dt)= —%—;sz,N—O [[(-1)dz dy = — area = —-%.
8 §z%ydz = fol(l—t)zt(—-dt) = —112; = z2y, N =0, fo 17 22z dy = — 01 Q'%’)idy= —ilf‘
8 M =zy? and N = 2%y + 2z 50 § Mdz + Ndy = [ [[(2zy + 2) — 2zy|dz dy = 2 times area.
10 M =byand N =cz: § Mdz + Ndy = [ [(c — b)dz dy = (c — b) times area;
b =7 and ¢ = 7 make the integral zero.

12 Let R be the square with base from a to b on the z axis. Set F = f(z)j so M =0 and N = f(z). The
line integral § Mdz + Ndy is (b — a)f(b) up the right side minus (b — a)f(a) down the left side. The
double integral is [ f dz dy = (b— a) fa df 4% Green’s Theorem gives equality; cancel b — a.

14 | F? S - dR = § —y dx +x dy since the 1ntegra.ls along the axes are zero. By Green’s Theorem this is
f J 2dx dy = 2 times a.rea between path and axes.

16 f F -nds= [zydy= — up the right side of the square where n = i (other sides give zero).

Also [y [ (y+0)dz dy =3
18 In the double integral M, = %(\/_T_’TLy’) = (;:sz%jm and N, 5%(\/%*?) = (P’ﬁizﬁﬁ
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so M, + Ny = 0 : Double integral = 0. Along the bottom edge (where y = 0 and n = —j) the line integral

mf% nd.s—f1 “;:‘;, = -1 Thenght.sxde(:t:-—la,ndn—x)yxeldsf0 —\/%——\/li-y B=1-v2.

Back across the top (y = 1,n = j, notice ds = —dz!) fl \/;’,‘% = /2 — 1. Down the left side (notice
ds = —dy!) gives +1. Adding the four sides § §- -nds=0

20 F = grad r = (£, %) has F - n = 0 along the z axis where n = —j and y = 0. On the unit circle
n is equal to F (unit vector pointing outward) so F -n = 1. Around the semicircle
fF nds— Iy lda—x The double integral has M, = Z(2)=1- 50 = E:— 3:- = ’L:- Similarly

(1) = —;— and M; + N, = —:— = L. The double mtegral is fo fol 1(rdrdf) = x.

22 f F -n ds is the same through a square and a circle because the difference is [ [(3¥ + 4¥)dz dy =
[ [ div Fdz dy = 0 over the region in between.

24 § (cos y dy —sin’z dz) = [[(0— 0)dz dy = 0. A different example would be more revealing.

26 dw 2 (ks . )+ 2 w(zhe) = :('—:{%'f?)”,’i = 0. Integrating _z¥—y gives g = %ln (x2 +y%) =Inr.
Thls is mﬁmt.e atz=y=0.

28 35- M and —”- = —N are compatible when M; + N, = gyx — gxy = 0. If also N, = M, then
gxx + Byy = —N + M, =0and g solves Laplace’s equa.tlon

30 3M 4 %’: = 3y? — 3y = 0. Solve & Fm = 3zy? for g = xy> and check 2 =y

32 3M oW aN = 0+0. Solve gﬁ- = y? for g = 1y + C(z) and add C(z) = }2° to give 3L = 22
Then g= s(y +x3).

34 M 4 N "N = ¢*t¥ — ¥ = (, Solve —9- = e*+¥ for g = €*+Y and check 3L = ¢*+V,

36 "M + 5 "N =y+ z # 0 (no stream functlon)

38 g(Q) = f PQ F -nds starting from g(P) = 0. Any two paths give the same mt.egral because forward on one

and back on the other gives § F - n ds = 0, provided the tests E — H for a stream function are passed.
40 With M, + N,, = 0 we can solve 9g/dy = M = 3z% — 3y? and 3g/3z = —M = 6zy to find
g=3x y — y . Then f; =g, = Mandfy——g,—N.
42 Mdy — Ndz is an exact differential if ¥ = — 3N, y - (Then there is a stream function g.)
4 f[S - dR=§-ydz+zdy=2 x area;éO
46 Simply connected: 2, 8, 6(?), 7. The other regions contain circles that can’t shrink to points.

15.4 Surface Integrals (page 581)

A small piece of the surface z = f(z,y) is nearly flat. When we go across by dz, we go up by (9z/8x)dx. That
movement is Adz, where the vector A isi + dz/dx k. The other side of the piece is Bdy, where B = j + (3z/3y)k.
The cross product A x B is N = —33/3x i — 3%/8y j + k. The area of the piece is dS = |N|dz dy. For the
surface £ = zy, the vectors are A = [f/1+ x2 +y2dxdy and N = —yi—x +k. The area integral is
[fdS=i+yk

With parameters u and v, a typical point on a 45° cone is z = u cos v,y = usinv,z = u. A change
in u moves that point by A du= (cosvi+ sinv j+k)du. The change in v moves the point by Bdv =
(—usinvi+ucosvj)dv. The normal vector is N=A xB = —ucosvi— usinvj+uk. The area is

= /2 udu dv. In this example A -B — 0 o the small piece is a a rectangle and d§ = |A||B|du dv.

For flux we need ndS. The unit normal vector n is N = A x B divided by |N|. For a surface z = f(z,y),
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15.4 Surface Integrals (page 581)

the product ndS is the vector N dz dy (to memorize from table). The particular surface z = zy has ndS =
(~yi — xj +k)dz dy. For F = zi + yj + 2k the flux through z = zy is F -ndS = —xy dz dy.

On a 30° cone the points are z = 2ucosv,y = 2usinv,z = u. The tangent vectors are A = 2cosvi
+2sinvj+k and B=—-2usinvi+2ucosvj. This cone has ndS = A x B du dv = (—2ucosvi—2
usinvj+4uk)dudv. For F = zi+yj+ 2z k, the flux element through the cone is F - ndS = zero. The
reason for this answer is that F is along the cone. The reason we don’t compute flux through a Mébius strip
is that N cannot be defined (the strip is not orientable).

1 N = —2zi — 2yj + k;dS = /1 + 422 + 442 d:z:dy, \/1+4r2rdrd6=§(173/2-1)
8 N =—i+j+k;dS = /3 dz dy; area /3«

5N =zl i ds = el [ oV s = n(2- /)
7 N = —7j + k;dS = 5/2 dz dy; area 51/24
(y ~22)l—2$yJ+k dS = \/1+ (y% — 22)? + 422y2dz dy = /1 + (y2 + 22)2dz dy;
ol ARV rdrd()--\;,'_+"—l"1-13él
11 N = 2i + 2j + k; dS = 3dz dy; 3(area of triangle with 2z +2y < 1) = %
13 rava? + h? 15 fol ol—yzy(\/gdz dy) =
17f "/4 sin” ¢ cos ¢ sin § cos f(sin ¢ d¢ df) = 0 19 A = i+j+2k;B = j+k; N = —i—j+k;dS = /3 du dv
21A=—sinu(cosvi+sinvj)+cosuk;B=—(3+cosu)sinui+(3+cosu)cosvj;
N = —(3+cosu)(cosucosvi+cosusinvj+sinuk);dS = (3 + cos u)du dv
23 ff(—Mgé—Ng—{;+P)dxdy=ff(—2z2——2y2+z)d:rdy=ff—-r2(rdrd0) =—8x
25 F -N=—z+y+2z=0on plane
2TN=—-i-j+kP=(v+u)i—uj,[[F-NdS=[[-vdudv=0
29 [f d.$'=f(;"’r 02"(3+cosu)du dv = 1272 31 Yes 33 No
85 A=i+ flcos@j+ f'sind k;B=—fsinfj+ fcosd k;N = ff'i— fcosf j— fsinfk;dS = |N|dz df =

f(z)V/1+ f'2dz db

2N=—2s1-2yj+kand dS = /1+4x2 + 4y2dx dy. Then [[dS = [>" [V3 VT4 drrdrds =

2(38%/2 —173/2),
4 N =-3i—-4j+k and dS = /26 dx dy. Then area = folfol\/_dxdy—v26.

N _ ui dx dy 2* 1 dr do _
6N \/1—33—y3 Jiey +k and dS = T2y . Then area = fl/\/i \'/1_:7 =
[- 2ﬂ'\/l 1/\/- = /2.
8N =-2 4 4k and ds = 44" 4z gy — /7 dx dy. Then area = [2" [*/2rdr df = v/Zx(b? — aZ).
10 N=-i —J + k and dS = /8 dx dy. Then surface area = /3 times base area = 2+/3.
12 z = Va2 — 22 gives N = \/i +k and dS = % Then area = 4f0 fo a’I—y’ ;—aif___—d%

14 N = —2zi + k and dS = V1 + 4x2dx dy. Area = [?, [ V1 + dz2dedy =4 [> 1+ 422 dz =
8f0\/( )2+ 22dz = 8[34/22 + (3)% + 3 In|z + /22 + (2)2[)3 = 12v/9.25 + In |3 + /9.25| — (In 3

16 On the sphere dS = sin ¢ dg df and g = 22 + y® = sin® ¢. Then [" [/ sin® ¢d¢d0—21r(§)=%

18 = 2cosv,y = 2sinv, and dS = 2dudv. Then [[gdS = f fo 2 cos v(2du dv) =

20 A=vi+j+k,B=ui+j—k,N=AxB=-2i+(u+0)j+(v—ukdS = mdudu.

22A-—cosv1+sva,B——usmvl-i-ucosvj +k,N =sinvi— cosvj + uk,dS = v/2du dv.

24 [[F ndS=[" f2 —r%drdf =—24r. 26 [[F-ndS= [[0dS=0.
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28 F - ndS = ((u + v)i — uyj)- (—2i + (¥ + v)j + (v — u)k)du dv = (2u + 2v — u?v — vZu)du dv.
Integrate with u = rcosf,v = rsinf : f:" fol (2rcosf + 2rsiné — r® cos? fsin § — r® sin® § cos B)rdrdf = 0.
30 A=cosfi+sinfj—2rk,B=—rsinfi+rcosfjN=AxB=2r2cosfi+2r?sindj+ rk,
[fk-ndS=[fk -Ndudv=[2" [ rdr df = xa? as in Example 12.
32 I think a “triple Mdbius strip” is orientable.
84 The plane z = az + by has roof area = Va2 + b2 times base area. So choose for example a = 1 and b = /2.

15.5 The Divergence Theorem (page 588)

In words, the basic balance law is flow in = flow out. The flux of F through a closed surface S is the
double integral [f F -ndS. The divergence of Mi+ Nj + Pk is Mx + Ny + Pg, and it measures the source
at the point. The total source is the triple integral [ff divF dV. That equals the flux by the Divergence
Theorem.

For F = 5zk the divergence is 5. If V is a cube of side a then the triple integral equals 5aS. The top surface
where z = a has n = k and F - n = 5a. The bottom and sides have F - n = zero. The integral [[ F - ndS equals
3
5a®.

The field F = R/p® has div F = 0 except at the origin. [[ F -ndS equals 47 over any surface around the
origin. This illustrates Gauss’s Law: flux = 4x times source strength. The field F = zi+ y j — 2z k has div
F =0 and [ F-ndS = 0. For this F, the flux out through a pyramid and in through its base are equal.

The symbol V stands for (3/9x)i + (8/8y)j + (3/9%)k. In this notation div F is V - F. The gradient of f is
Vf. The divergence of grad f is V- Vf or V2f. The equation div grad f = 0 is Laplace’s equation.

The divergence of a product is div(yV) = udivV +(gradu)-V. Integration by parts in 3D is
fffudivVdzdydz=— [[f V- gradudxdyds + [[uV -ndS. In two dimensions this becomes
ffu(dM/3x + dN/3y)dx dy = — [(M 3u/dx + N du/dy)dx dy + [u V - n ds. In one dimension it becomes
integration by parts. For steady fluid flow the continuity equation is div pV = —3p/at.

1divF=1fffdVv=4%  8divF=2z+2y+2z [[[divFdV=0 5divF=3,[f3dV=2=1
TF-N= p’,ffp___apndS = 4xat 9 div F = 22, 02" ;/2 s 2pcos $(p?sin ¢ dp d¢ df) = Lnat
11 [ [5 J5 2z + 1)dz dy dz = a* + a®;—24% + 202 + 0 + a* + 0 + a®
13divF=2[[[2dV =0;F -n=z,[[zdS =0 15divF=1;[ff1dVv=5[ff1dv =1}
17div(;R7)=‘ﬁﬁ:B'-+R-grad-’;1;=f-,—-—-p%—R-gradp
19 Two spheres, n radial out, n radial in, n = k on top, n = —k on bottom, n = \;—% on side;
n = —i,—j,—k,i+ 2j + 3k on 4 faces; n =k on top, n = 71;(‘-:-i+¥j—k) on cone
21V = cylinder, [[ [divF dV = [[(3¥% + &¥)dz dy (2 integral = 1); [ [F -ndS =
J Mdy — Ndz, z integral = 1 on side, F - n = 0 top and bottom; Green’s flux theorem.
28 divF = %?M = —4xG; at the center; F = 2R inside, F = 2(%)3R outside
25divu,=§,q=Ef,n,ffE-nds=ff1dS=4w 27 F (divF =0);F;T(F-n<1); F
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29 Plane circle; top half of sphere; divF =0

2f[F-ndS=[[f0dV =0
4 [[F-ndS= [, [} [o(2z+2y+22)drdydz=1+1+1=38.
6 [[F -ndS = (directly) [[dS = 4ra2. By the Divergence Theorem: foz Il %p’ sin ¢ dp d¢ df = 4xa?
8 [[ ¥ -ndS = [2" [T [ 3p*sin $dp dg df = 12=a5.
10 divF =0+ ze¥sinz — zeVsinz=0s0 [[F -ndS =0.
12 An integral over a box with small side a is near ca®. Here div F = 2z + 1 has integral a* + a3, which is
near a3 because g is small. Then ¢ = 1, which equals div F on the plane z = 0.
14 R-n=(zi+ yj+ 2k) -i =z = 1 on one face of the box. On the five other faces R -n = 2, 3,0,0,0.
The integral is f:f:ldydz+f:f;2dzdz+f:fol3dzdy=18. AlsodivR=1+1+1=3and
_fos foz fol 3dz dy dz = 18.
16 The normal vectors to the cube are n = =i, +j,+k. Then [[F -ndS = fol fol zdz dy+
I3 o (~z)dz dy + [y [y = dz dz + I3 f)(=a)dzdz + [} [ 0dy dz + [, [, 1dydz =1.
Also [[[divRdV = [, [ [ 1dz dy dz = 1.
18 grad f - n is the directional derivative in the normal direction n (also written %&).
The Divergence Theorem gives [ [ [ div (grad f) dV = [ grad f-ndS = [ [ Lds.
But we are given that div (grad f) = fzz + fyy + fsa i8 sero.
20 Suppose F is perpendicular to n on the surface; then [ [ F -ndS = 0. Example on the unit sphere:
P is any ¢q(z,y, z) times the spin field —yi + zj.
22 The spin field F = —yi + zj has div F = 0 and F -n = 0 on the unit sphere.
24 The flux of F = R/p> through an area A on a sphere of radius p is A/p?, because | F |=1/p% and F
is outward. The spherical box has A/p? = sin ¢d¢ df on both faces (minus sign for face pointing in).
No flow through sides of box perpendicular to F. So net flow = gzero.
26 When the density p is constant (incompressible flow), the continuity equation becomes div V = 0. If the flow
is irrotational then F = grad f and the continuity equation is div (p grad f) = —dp/dt.
If also p = constant, then div grad f = 0: Laplace’s equation for the “potential.”
28 Extend E-F-G-H in Section 15.3 to 3 dimensions: E The total flux [ f F -ndS through every closed
surface is sero F. Through all surfaces with the same boundary [ [ F -ndS is the same
G There is a stream field g for which F = curl g H. The divergence of F is zero (this is the quick test).
80 The boundary of a solid ball is a sphere. A sphere has no boundary. Similarly for a cube or a cylinder — the
boundary is a closed surface and that surface’s boundary is empty. This is a crucial fact in topology.

15.6 Stokes’ Theorem and the Curl of F (page 595)

The curl of Mi+ Nj + Pk is the vector (Py — Ng)i+ (Mg — Px)j + (Nx — My)k. It equals the 3 by 3
i j k

3/0x 08/3y 08/3% | The curl of z% + 2°k is sero. For 8 = yi — (z + 2)j + yk the curl is
M N P

2i — 2k. This S is a spin field ax R = 1( curl F) x R, with axis vector a =i — k. For any gradient field

fzi+ fyj+ f:k the curl is zero. That is the important identity curl grad f = zero. It is based on f;, = fyz and

determinant
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fxz = fgx and fyg = fgy. The twin identity is div curl F = 0.

The curl measures the spin (or turning) of a vector field. A paddlewheel in the field with its axis along
n has turning speed %n- curl F. The spin is greatest when n is in the direction of curl F. Then the angular

velocity is %] curl F|.

Stokes’ Theorem is §o F - dR = Jfg(curl F) - n dS. The curve C is the boundary of the surface S. This is
Green’s Theorem extended to three dimensions. Both sides are zero when F is a gradient field because the
curl is zero.

The four properties of a conservative field are A: fF-dR=0andB: f19 F-dR depends only
on P and Q and C: F is the gradient of a potential function f(x,y,z) andD: curl ¥ =
The field y2 2i + 2zy?zk fails test D. This field is the gradient of no f. The work [F - dR from (0,0,0) to
(1,1,1) is E along the straight pathx =y = 2 = t. For every field F, [ curl F - ndS is the same out through
a pyramid and up through its base because they have the same boundary, so § F - dR is the same.

lcurl F=i+j+k Scurl F=0 Scul F=0 Tf=3(z+y+2)?

9 curl i = 0; z"j has serocurl if n =0 11 curl F = 2yi; n=jon circle so [ [F-ndS =0
1Scul F=2i+2j,n=14i,[fcul F-ndS= [[2dS =2x
15 Both integrals equal [ F - dR; Divergence Theorem, V = region between S and T, always div curl F = 0
17 Always div curl F =0 19 f=zz+y 21 f=¢""% 23 F =yk .
25 curl F = (agba — azb3)i + (a1b3 — asby)j + (azby — ayba)k 27 curl F = 2wk; curl F = % ;k =2w/V3
29 F = z(a3z + azy)i + y(a1z + asz)j + z(alz + agy)k

s1 curl F=-2k, [[ -2k -RdS = f —2cos¢(sm¢ dp df) = —2x; [ydz —zdy =

(— sin? t — cos? t)dt = —2x
33 curl F = 2a, 2ff(a1z + a2y + a32)dS = 0+ 0+ 2a3 [°" "/2 o8 ¢ sin ¢ do df = 2mas

85 curl F = —i,n = —J—— JJ P -ndS = ~Jenr?

$Tg= ”— "53— = strea.m function; gero divergence

39 div F div(V4+ W)=divVsoy=divVso V= LJ (has zero curl). Then W =F -V = zyi — j
41 curl (curl F) = curl (—2yk) = —2i; grad (div F) = grad 2z = 2i; F,, + Fy, + F,, = 4i

48 curl E = —-%?— =asint so E = 1(a x R)sint

45n=jso [Mdz+Pdz=[[(24 —%E)dzdz 4T M; =My +M,f,+Pyfo+P.fyfz+ Pfay
49 [F-dR= [[curlF -ndS;[[F -ndS= [[[divF dV

2 curl F = 0 because curl of gradient is always zero. 4 curl F = —i + j — k from equation (1).
6 curl F = 2i + 2j from Example 2: curl (a x R) = 2a.
8 f(z,y,2) = r"*1/2(n + 1) has grad f = p"R (so its curl is zero).
10 curl (@12 + a2y + a3z)k = aai — a,j which is zero when a; = 0 and a2 = 0.
12 curl (i X R) = 2i directly (or by Example 2 with a =i). Then § F-dR = [[ curl F -ndS = Osincen=j is
perpendicular to i.
14 F = (22 + y?)k so curl F = 2(yi — zj). (Surprise that this F = a x R has curl F = 2a even with nonconstant
a.) Then § F-dR = [ [ curl F -ndS = 0 since n = k is perpendicular to curl F.
16 C is the equator (the common boundary of S and T); V is the whole ball (the earth). Note that n doesn’t
point out in the bottom half T, or the direction around C would be opposite.
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For F = R (position vector), [ [, F -ndS = — [ [ F -ndS.

18 If curl F = O then F is the gradient of a potential: F = grad f. ThendivF =0isdivgrad f =0
which is Laplace’s equation.

20 The potential is f = z%y. 33 The potential is f = zyz + $2°

24 Start with one field that has the required curl. (Can take F = 1i x R = —%j + ¥k). Then add any F with
curl sero (particular solution plus homogeneous solution as always). The fields with curl F = 0 are
gradient fields F = grad f, since curl grad = 0. Answer: F = -1-i X R+ any grad f.

26 F = yi — zk has curl F = j — k. (a) Angular velocity = } curl F ‘n=1%ifn=j.
(b) Angular velocity = 1|curlF| 3C (¢) Angular veloclty 0.

28 One possibility: ¥ = —'t”—k has curl F = spin field S. Other possibilities: F = —"—k + any grad f.

80 False (curl F = curl G means curl (F — G) = 0 but not F — G = 0). True (curl (F G)=0Omakes F -G
a gradient field). False (F = zi + yj + zk and G = 0 have the same curl (sero) but div F = 3).

i b ] k
32 Cuwl R/p? = 3/82 a/ay 8/8z | has i component za—p - y‘%p‘2 = 0. Similarly for j and k:
z/p* y/p® z/p?

thus curl F = 0 and [ curl F - ndS = 0 and (separately) { F - dR = § Mdz + Ndy = § zdz+ ydy = 0.
84 Based on Problem 47 of Section 11.3, the triple vector product (a x R) x RisF=(a-R)R - (R-R)a =

(az + by + cz)R — (22 + y® + 2%)a. Then by Problem 42 b of this section, or directly, the curl is

grad (az + by +cz) x R —grad(z® + y?* + 2’) xa=axR-2Rxa=8ax R. Now [ curl F -ndS =0

since n = R is perpendicular to the cross product curl F = 3a x R.

Also, fF-dR = [(a-R)R-dR — (R -R)a - dR = 0 because R - dR = 0 on the circle and R-R = 1.

i 5 x
86curl F=| 3/3z 3/dy 8/3z |=i(zz)+j(1—yz)+k(l)andn=1zi+yj+2k. Socurl F-n =
z T  zyz

z?z+y—y?’z+2 By symmetry [f 222 dS = [ [ y?2dS on the half sphere and [ [ ydS = 0.
This leaves [ [ 2 dS = [ [7/? cos §(sin ¢ d¢ df) = L(2%) = x.
88 (The expected method is tnal and error) F = 5yzi + 2zyk + any grad f.
40 Work = § B-dR = [ [ (curl B) -ndz dy = [ [ uJ -ndz dy So work is 4 times current through C.

42 (a) curl vi = —J - —k Then curl (curl F) = (—5%'5’- 3;;)i+ ai 359 + a’: 3-k. Also

grad (div F) = 83, + ¥ ayj + ag 3; K. The difference is (vzz + vyy + v,,)i. Note: The same steps
for the j and k components give identity (a) for any F. My favorite is to square this matrix:
[ curl grad ] [ curl grad ] _ [ curl curl — grad div 0
—-div 0 —div - 0 —divgrad

(b) curl (fvi) = (fiv + fv.)j — (fvy + fyv)k. This is f curl F = f(v,j — v k) added to (grad f) x F =
f:v J — fyvk. Again the identity extends to any F.

44 F x G = (Np — Pn)i+ (Pm— Mp)j + (Mn — Nm)k. Its divergence is the sum of z,y, and z derivatives:
[Nzp+ Npz — P,n— Pn;| + [Pym+ Pmy — Myp — Mp,] + [M,n + Mn, — N,m — Nm,]. Note that m
multiplies P, — N, the first component of curl F. This starts G- curl F — F- curl G, as we want.

46 False. Certainly GxF would be perpendicular to F but Vx F is something different. For example F = i + yk
has VX F=iso (VxF)-F=

] = V2[}
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48 S = roof, its shadow = ground floor, C = edge of roof, shadow of C = boundary of ground floor. Similarly
for spherical cap z2 + y? + 2% = 1 above z = 1. Note C is on the plane z = } and its shadow is a circle
around the shadow of the cap, down on the plane z = 0.

50 curl V = curl (—zk) = j. A wheel in the zz plane has n = j so it spins at full speed. A wheel perpendicular
to j will not spin, if it is in the zy plane with n = k.
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