CHAPTER 15 VECTOR CALCULUS

15.1 Vector Fields (page 554)

A vector field assigns a vector to each point (x, y) or (x, y, z). In two dimensions $\mathbf{F}(x, y) = \mathbf{M}(\mathbf{x}, \mathbf{y})\mathbf{i} + \mathbf{N}(\mathbf{x}, \mathbf{y})\mathbf{j}$. An example is the position field $\mathbf{R} = \mathbf{x} \mathbf{i} + \mathbf{y} \mathbf{j}(+\mathbf{z} \mathbf{k})$. Its magnitude is $|\mathbf{R}| = \mathbf{r}$ and its direction is out from the origin. It is the gradient field for $f = \frac{1}{2}(\mathbf{x}^2 + \mathbf{y}^2)$. The level curves are circles, and they are perpendicular to the vectors \mathbf{R} .

Reversing this picture, the spin field is S = -y i + x j. Its magnitude is |S| = r and its direction is around the origin. It is not a gradient field, because no function has $\partial f/\partial x = -y$ and $\partial f/\partial y = x$. S is the velocity field for flow going around the origin. The streamlines or field lines or integral curves are circles. The flow field ρV gives the rate at which mass is moved by the flow.

A gravity field from the origin is proportional to $\mathbf{F} = \mathbf{R}/\mathbf{r}^3$ which has $|\mathbf{F}| = 1/\mathbf{r}^2$. This is Newton's inverse square law. It is a gradient field, with potential $f = 1/\mathbf{r}$. The equipotential curves f(x, y) = c are circles. They are perpendicular to the field lines which are rays. This illustrates that the gradient of a function f(x, y) is perpendicular to its level curves.

The velocity field $y \mathbf{i} + x \mathbf{j}$ is the gradient of $f = \mathbf{xy}$. Its streamlines are hyperbolas. The slope dy/dx of a streamline equals the ratio N/M of velocity components. The field is tangent to the streamlines. Drop a leaf onto the flow, and it goes along a streamline.

f(x, y) = x + 2y 3 $f(x, y) = \sin(x + y)$ 5 $f(x, y) = \ln(x^2 + y^2) = 2\ln r$ $\mathbf{F} = xy\mathbf{i} + \frac{x^2}{2}\mathbf{j}, f(x, y) = \frac{x^2y}{2}$ 9 $\frac{\partial f}{\partial x} = 0$ so f cannot depend on x; streamlines are vertical (y = constant) $\mathbf{F} = 3\mathbf{i} + \mathbf{j}$ 13 $\mathbf{F} = \mathbf{i} + 2y\mathbf{j}$ 15 $\mathbf{F} = 2x\mathbf{i} - 2y\mathbf{j}$ 17 $\mathbf{F} = e^{x-y}\mathbf{i} - e^{x-y}\mathbf{j}$ $\frac{dy}{dx} = -1; y = -x + C$ 21 $\frac{dy}{dx} = -\frac{x}{y}; x^2 + y^2 = C$ 23 $\frac{dy}{dx} = \frac{-x/y^2}{1/y} = \frac{-x}{y}; x^2 + y^2 = C$ 25 parallel $\mathbf{F} = \frac{5x}{r}\mathbf{i} + \frac{5y}{r}\mathbf{j}$ 29 $\mathbf{F} = \frac{-mMC}{r^3}(x\mathbf{i} + y\mathbf{j}) - \frac{mMC}{((x-1)^2+y^2)^{3/2}}((x-1)\mathbf{i} + y\mathbf{j})$ $\mathbf{F} = \frac{\sqrt{2}}{2}y\mathbf{i} - \frac{\sqrt{2}}{2}x\mathbf{j}$ 33 $\frac{dy}{dx} = \frac{-2}{x^2} = -\frac{1}{2}; \frac{dy}{dx} = \frac{x}{\sqrt{x^2-3}} = 2$ $\frac{\partial f}{\partial x} = \frac{\partial f}{\partial r}\frac{\partial r}{\partial x} = \frac{\partial f}{\partial r}\frac{x}{r}; \frac{\partial f}{\partial y} = \frac{\partial f}{\partial r}\frac{y}{r}; f(r) = C$ gives circles 37 T; F (no equipotentials); T; F (not multiple of $x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$)

39 F and F + i and 2F have the same streamlines (different velocities) and equipotentials (different potentials). But if f is given, F must be grad f.

Answers 2 - 8 includes extra information about streamlines.

2 xi + j is the gradient of $f(x, y) = \frac{1}{2}x^2 + y$, which has parabolas $\frac{1}{2}x^2 + y = c$ as equipotentials (they open down). The streamlines solve dy/dx = 1/x (this is N/M). So $y = \ln x + C$ gives the streamlines.

- 4 $i/y xj/y^2$ is the gradient of f(x, y) = x/y, which has rays x/y = C as equipotentials (compare Figure 13.2; the axis y = 0 is omitted). The streamlines solve dy/dx = N/M = -x/y. So $y \, dy = -x \, dx$ and the streamlines are $y^2 + x^2 = \text{constant}$ (circles).
- 6 x^2 i + y^2 j is the gradient of $f(x, y) = \frac{1}{3}(x^3 + y^3)$, which has closed curves $x^3 + y^3 = \text{constant}$ as equipotentials. The streamlines solve $dy/dx = y^2/x^2$ or $dy/y^2 = dx/x^2$ or $y^{-1} = x^{-1} + \text{constant}$.
- 8 The potential can be $f(x,y) = \mathbf{x}\sqrt{\mathbf{y}}$. Then the field is $\nabla f = \sqrt{\mathbf{y}}\mathbf{i} + \frac{1}{2}x\mathbf{j}/\sqrt{\mathbf{y}}$. The equipotentials are curves

 $x\sqrt{y} = C$ or $y = C^2/x^2$. The streamlines solve dy/dx = N/M = x/2y so $2y \, dy = x \, dx$ or $y^2 - \frac{1}{2}x^2 = c$. 10 If $\frac{\partial f}{\partial x} = -y$ then f = -yx + any function C(y). In this case $\frac{\partial f}{\partial y} = -x + \frac{dC}{dy}$ which can't give $\frac{\partial f}{\partial y} = x$. 12 $\frac{\partial f}{\partial x} = 1$ and $\frac{\partial f}{\partial y} = -3$; $\mathbf{F} = \mathbf{i} - 3\mathbf{j}$ has parallel lines x - 3y = c as equipotentials. 14 $\frac{\partial f}{\partial x} = 2\mathbf{x} - 2$ and $\frac{\partial f}{\partial y} = 2\mathbf{y}$; $\mathbf{F} = (2x - 2)\mathbf{i} + 2\mathbf{y}\mathbf{j}$ leads to circles $(x - 1)^2 + y^2 = c$ around the center (1,0). 16 $\frac{\partial f}{\partial x} = \mathbf{e}^{\mathbf{x}} \cos \mathbf{y}$ and $\frac{\partial f}{\partial y} = -\mathbf{e}^{\mathbf{x}} \sin \mathbf{y}$; $\mathbf{F} = e^x (\cos y\mathbf{i} - \sin y\mathbf{j})$ leads to curves $e^x \cos y = c$ which stay inside a strip like $|y| < \frac{\pi}{2}$. (They come in along the top, turn near the y axis, and leave along the bottom.) 18 $\frac{\partial f}{\partial x} = \frac{-y}{-2}$ and $\frac{\partial f}{\partial y} = \frac{1}{x}$; $\mathbf{F} = -\frac{y}{x^2}\mathbf{i} + \frac{1}{x}\mathbf{j}$ has the rays $\frac{y}{x} = c$ as equipotentials (omit the axis x = 0). 20 $\frac{dy}{dx} = x$ gives $y = \frac{1}{2}x^2 + C$ (parabolas). 22 $\frac{dy}{dx} = -\frac{x}{y}$ gives $y^2 + x^2 = C$ (circles). 24 $\frac{dy}{dx} = \frac{1}{2}$ gives $y = \frac{1}{2}x + C$ (parallel lines). 26 $f(x,y) = \frac{1}{2} \ln(x^2 + y^2) = \ln \sqrt{x^2 + y^2}$. This comes from $\frac{\partial f}{\partial x} = \frac{x}{x^2 + u^2}$ or $f = \int \frac{x \, dx}{x^2 + u^2}$. 28 The gradient $3x^2i + 3y^2j$ is perpendicular. For unit length take **F** (or **V**) as $(x^2i + y^2j)/\sqrt{x^4 + y^4}$. **30** The field is a multiple of i + j. To have speed 4 take **F** (or **V**) as $\sqrt{8}(i + j)$. **32** From the gradient of $y - x^2$, **F** must be -2xi + j (or this is -F). **34** The slope $\frac{dy}{dx}$ is $-f_x/f_y$ from the first equation. The field is $f_x \mathbf{i} + f_y \mathbf{j}$ so this slope is -M/N. The product with the streamline slope N/M is -1, so level curves are perpendicular to streamlines. 36 F is the gradient of $f = \frac{1}{2}ax^2 + bxy + \frac{1}{2}cy^2$. The equipotentials are ellipses if $ac > b^2$ and hyperbolas if $ac < b^2$. (If $ac = b^2$ we get straight lines.) 40 (a) $\mathbf{R} + \mathbf{S} = (x - y)\mathbf{i} + (y + x)\mathbf{j}$ has magnitude $\sqrt{2}\mathbf{r}$. (b) The magnitude is now $\sqrt{2}$ (difference of perpendicular unit vectors). (c) The direction stays parallel to i + j (at 45°).

(d) yi is a shear field, pointing in the x direction and growing in the y direction.

15.2 Line Integrals (page 562)

Work is the integral of $\mathbf{F} \cdot d\mathbf{R}$. Here \mathbf{F} is the force and \mathbf{R} is the position. The dot product finds the component of \mathbf{F} in the direction of movement $d\mathbf{R} = dx \mathbf{i} + dy \mathbf{j}$. The straight path (x, y) = (t, 2t) goes from (0,0) at t = 0 to (1,2) at t = 1 with $d\mathbf{R} = dt \mathbf{i} + 2dt \mathbf{j}$.

Another form of $d\mathbf{R}$ is $\mathbf{T}ds$, where \mathbf{T} is the unit tangent vector to the path and the arc length has $ds = \sqrt{(d\mathbf{x}/dt)^2 + (d\mathbf{y}/dt)^2}$. For the path (t, 2t), the unit vector \mathbf{T} is $(\mathbf{i} + 2\mathbf{j})/\sqrt{5}$ and $ds = \sqrt{5}dt$. For $\mathbf{F} = 3\mathbf{i} + \mathbf{j}$, $\mathbf{F} \cdot \mathbf{T} ds$ is still 5dt. This \mathbf{F} is the gradient of $f = 3\mathbf{x} + \mathbf{y}$. The change in f = 3x + y from (0,0) to (1,2) is 5.

When $\mathbf{F} = \operatorname{grad} f$, the dot product $\mathbf{F} \cdot d\mathbf{R}$ is $(\partial f/\partial x)dx + (\partial f/\partial y)dy = df$. The work integral from P to Q is $\int df = \mathbf{f}(\mathbf{Q}) - \mathbf{f}(\mathbf{P})$. In this case the work depends on the endpoints but not on the path. Around a closed path the work is zero. The field is called conservative. $\mathbf{F} = (1 + y)\mathbf{i} + x\mathbf{j}$ is the gradient of $f = \mathbf{x} + \mathbf{xy}$. The work from (0,0) to (1,2) is **3**, the change in potential.

For the spin field $S = -y \mathbf{i} + \mathbf{x} \mathbf{j}$, the work does depend on the path. The path $(x, y) = (3 \cos t, 3 \sin t)$ is a circle with $S \cdot d\mathbf{R} = -\mathbf{y} d\mathbf{x} + \mathbf{x} d\mathbf{y} = 9 dt$. The work is 18π around the complete circle. Formally $\int g(x, y) ds$ is the limit of the sum $\sum \mathbf{g}(\mathbf{x}_i, \mathbf{y}_i) \Delta \mathbf{s}_i$.

The four equivalent properties of a conservative field $\mathbf{F} = M\mathbf{i} + N\mathbf{j}$ are A: zero work around closed paths,

B: work depends only on endpoints, C: gradient field, D: $\partial M/\partial y = \partial N/\partial x$. Test D is passed by $\mathbf{F} = (y+1)\mathbf{i} + x\mathbf{j}$. The work $\int \mathbf{F} \cdot d\mathbf{R}$ around the circle $(\cos t, \sin t)$ is zero. The work on the upper semicircle equals the work on the lower semicircle (clockwise). This field is the gradient of $f = \mathbf{x} + \mathbf{xy}$, so the work to (-1, 0) is -1 starting from (0,0).

 $1 \int_{0}^{1} \sqrt{1^{2} + 2^{2}} dt = \sqrt{5}; \int_{0}^{1} 2 dt = 2$ $3 \int_{0}^{1} t^{2} \sqrt{2} dt + \int_{1}^{2} 1 \cdot (2 - t) dt = \frac{\sqrt{2}}{3} + \frac{1}{2}$ $5 \int_{0}^{2\pi} (-3 \sin t) dt = 0 \text{ (gradient field)}; \int_{0}^{2\pi} -9 \sin^{2} t dt = -9\pi = - \text{ area}$ $7 \text{ No, } xy \text{ j is not a gradient field; take line } x = t, y = t \text{ from } (0,0) \text{ to } (1,1) \text{ and } \int t^{2} dt \neq \frac{1}{2}$ $9 \text{ No, for a circle } (2\pi r)^{2} \neq 0^{2} + 0^{2}$ $11 f = x + \frac{1}{2}y^{2}; f(0,1) - f(1,0) = -\frac{1}{2}$ $13 f = \frac{1}{2}x^{2}y^{2}; f(0,1) - f(1,0) = 0$ $15 f = r = \sqrt{x^{2} + y^{2}}; f(0,1) - f(1,0) = 0$ $17 \text{ Gradient for } n = 2; \text{ after calculation } \frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} = \frac{n-2}{r^{n}}$ $19 x = a \cos t, x = a \sin t, ds = a dt, M = \int_{0}^{2\pi} a^{3} \cos^{2} t dt = \pi a^{3}, (\bar{x}, \bar{y}) = (0,0) \text{ by symmetry}$ $23 T = \frac{2i+2i}{\sqrt{4+4i^{2}}} = \frac{i+4j}{\sqrt{1+4^{2}}}; \mathbf{F} = 3x \mathbf{i} + 4\mathbf{j} = 6t \mathbf{i} + 4\mathbf{j}, ds = 2\sqrt{1+t^{2}}dt, \mathbf{F} \cdot \mathbf{T} ds = (6t \mathbf{i} + 4\mathbf{j}) \cdot (\frac{1+4j}{\sqrt{1+t^{2}}})2\sqrt{1+t^{2}}dt = 20t dt; \mathbf{F} \cdot d\mathbf{R} = (6t\mathbf{i} + 4\mathbf{j}) \cdot (2 dt\mathbf{i} + 2t dt \mathbf{j}) = 20t dt; \text{ work } = \int_{1}^{2} 20t dt = 30$ $25 \text{ If } \frac{\partial M(y)}{\partial y} = \frac{\partial N(x)}{\partial x} \text{ then } M = ay + b, N = ax + c, \text{ constants } a, b, c$ $27 \mathbf{F} = 4xj \text{ (work = 4 from (1,0) up to (1,1))}$ $29 f = [x - 2y]_{(0,0)}^{(1,1)} = -1$ $31 f = [xy^{2}]_{(0,0)}^{(1,1)} = 1$ $35 \text{ Not conservative; } \int_{0}^{1} (ti - tj) \cdot (dt \mathbf{i} + dt \mathbf{j}) = \int 0 dt = 0; \int_{0}^{1} (t^{2}\mathbf{i} - t\mathbf{j}) \cdot (dt \mathbf{i} + 2t dt \mathbf{j}) = \int_{0}^{1} -t^{2}dt = -\frac{1}{3}$ $5 \frac{\partial M}{\partial y} = \frac{x, \frac{\partial M}{\partial x}} = 2x + b, \text{ so } a = 2, b \text{ is arbitrary}$ $37 \frac{\partial M}{\partial y} = 2ye^{-x} = \frac{\partial M}{\partial x}; f = -y^{2}e^{-x}$ $39 \frac{\partial M}{\partial y} = \frac{-xy}{r^{1}} = \frac{\partial M}{\partial y}; f = r = \sqrt{x^{2} + y^{2}} = |x\mathbf{i} + y\mathbf{j}|$ $41 \mathbf{F} = (x - y)\mathbf{i} + (x + y)\mathbf{j} \text{ has } \frac{\partial M}{\partial y} = -1, \frac{\partial M}{\partial x} = 1, \text{ no } f$ $43 2\pi; 0; 0$

- 2 Note $ds = \sqrt{\sin^2 t + \cos^2 t} dt = dt$. Then $\int x \, ds = \int_0^{\pi/2} \cos t \, dt = 1$ and $\int xy \, ds = \int_0^{\pi/2} \sin t \cos t \, dt = \frac{1}{2}$. 4 Around the square $0 \le x, y \le 3, \int_3^0 y \, dx = -9$ along the top (backwards) and $\int_0^3 -x \, dy = -9$ up the right side. All other integrals are zero: answer -18. By Section 15.3 this integral is always $-2 \times$ area.
- $6 \int \frac{ds}{dt} dt = \int ds = \operatorname{arc length} = 5.$
- 8 Yes The field xi is the gradient of $f = \frac{1}{2}x^2$. Here M = x and N = 0 so we have $\int_P^Q M dx + N dy = f(Q) f(P)$. More directly: up and down movement has no effect on $\int x dx$.
- 10 Not much. Certainly the limit of $\Sigma(\Delta s)^2$ is zero.
- 12 $\frac{\partial N}{\partial x} = 0$ and $\frac{\partial M}{\partial y} = 1$; not conservative, take straight path x = 1 t, $y = t : \int \mathbf{F} \cdot d\mathbf{R} = \int y \, dx + dy = \int_0^1 t(-dt) + dt = \frac{1}{2}$.
- 14 $\frac{\partial N}{\partial x} = \frac{\partial M}{\partial y}$ and **F** is the gradient of $f = xe^y$. Then $\int \mathbf{F} \cdot d\mathbf{R} = f(Q) f(P) = -1$.
- 16 $\frac{\partial N}{\partial x} \neq \frac{\partial M}{\partial y}$; not conservative, choose straight path x = 1-t, y = t: $\int -y^2 dx + x^2 dy = \int t^2 dt + (1-t)^2 dt = \frac{2}{3}$. 18 $\frac{R}{r^n}$ has $M = \frac{x}{(x^2+y^2)^{n/2}}$ and $\frac{\partial M}{\partial y} = -xny(x^2+y^2)^{-(n/2)-1}$. This agrees with $\frac{\partial N}{\partial x}$ so $\frac{R}{r^n}$ is a

gradient field for all n. The potential is $f = \frac{r^{2-n}}{2-n}$ or $f = \ln r$ when n = 2.

- 20 The semicircle has $x = a \cos t$, $y = a \sin t$, $ds = ad\bar{t}, 0 \le t \le \pi$. The mass is $M = \int \rho ds = \int \rho a dt = \rho a \pi$. The moment is $M_x = \int \rho y \, ds = \int \rho a^2 \sin t \, dt = 2\rho a^2$. Then $\bar{x} = 0$ (by symmetry) and $\bar{y} = \frac{2\rho a^2}{\rho a \pi} = \frac{2a}{\pi}$.
- 22 (a) For a gradient field $\int \mathbf{F} d\mathbf{R} = f(Q) f(P)$. Here Q = (1, 1, 1) and P = (0, 0, 0) so f(Q) f(P) = 2. (b) $\int Mdx + Ndy + Pdz = \int t^2 dt - t(2t dt) + t^3(3t^2 dt) = \frac{1}{6}$.
- 24 P = 0 means $\frac{\partial f}{\partial z} = 0$. So f is f(x, y). So $M = \frac{\partial f}{\partial x}$ and $N = \frac{\partial f}{\partial y}$ cannot depend on z.
- 26 (a) $\int y^3 dx + 3xy^2 dy = \int_0^1 (yt)^3 (x dt) + 3xt(yt)^2 (ydt) = xy^3$. Then $\frac{\partial W}{\partial x} = y^3$ and $\frac{\partial W}{\partial y} = 3xy^2$ (conservative). (b) $W = \int_0^1 (xt)^3 (x dt) + 3(yt)(xt)^2 (y dt) = \frac{1}{4} (x^4 + 3y^2 x^2)$. But $\frac{\partial W}{\partial x} \neq M$ (not conservative).

(c)
$$W = \int_0^1 \frac{xt}{yt} (x \, dt) + \frac{yt}{xt} (y \, dt) = \frac{x^2}{y} + \frac{y^2}{x}$$
. But $\frac{\partial W}{\partial x} \neq M$ (not conservative).
(d) $W = \int_0^1 e^{xt+yt} (x \, dt + y \, dt) = e^{x+y} - 1$. Then $\frac{\partial W}{\partial x} = e^{x+y}$ and $\frac{\partial W}{\partial y} = e^{x+y}$ (conservative).
28 $\mathbf{F} = x^2 \mathbf{j}$ on the circle $x = \cos t$, $y = \sin t$ has $\int \mathbf{F} \cdot d\mathbf{R} = \int_0^{2\pi} \cos^2 t (\cos t \, dt) = 0$.
30 $\int x^2 dy = \int_0^1 t^2 dt = \frac{1}{3} \text{ but } \int_0^1 t^2 (2t \, dt) = \frac{1}{2}$.
32 $\frac{\partial N}{\partial x} \neq \frac{\partial M}{\partial y}$ (not conservative): $\int x^2 y \, dx + xy^2 \, dy = \int_0^1 2t^3 dt = \frac{1}{2} \text{ but } \int_0^1 t^2 (t^2) dt + t(t^2)^2 (2t \, dt) = \frac{17}{35}$.
34 The potential is $f = \frac{1}{2} \ln(x^2 + y^2 + 1)$. Then $f(1, 1) - f(0, 0) = \frac{1}{2} \ln 3$.
36 $\int_0^1 -t^2 (-2t \, dt) + (1 - t^2) (2t \, dt) = 1$ (as before). On the quarter-circle ending at $t = \frac{\pi}{4}$: $\int_0^{\pi/4} (-\sin 2t) (-2\sin 2t \, dt) + (\cos 2t) (2\cos 2t \, dt) = 2\frac{\pi}{4} = \frac{\pi}{2}$ as before.
38 $\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} = -2ye^x - 2ye^x \neq 0$. No potential $f(x, y)$.
40 $\mathbf{F} = \frac{y^{1} + z^{1}}{\sqrt{y^{2} + x^{2}}}$ has $\frac{\partial N}{\partial x} \neq \frac{\partial M}{\partial y}$.
42 $\frac{\partial N}{\partial x} = \frac{\partial M}{\partial y}$ if and only if $b = c$. Then $f(x, y) = \frac{1}{2}ax^2 + bxy + \frac{1}{2}dy^2$.
44 True because $\int \mathbf{F} \cdot d\mathbf{R} = \int y \, dx$. False because $\mathbf{F} = yi$ is not conservative. (The area underneath depends on the curve.) True because the area is π (and $\int y \, dx = \int_0^{2\pi} \sin t(\sin t \, dt) = \pi$.)

15.3 Green's Theorem (page 571)

The work integral $\oint M \, dx + N \, dy$ equals the double integral $\iint (N_X - M_Y) dx dy$ by Green's Theorem. For $\mathbf{F} = 3\mathbf{i} + 4\mathbf{j}$ the work is zero. For $\mathbf{F} = x\mathbf{j}$ and $-y\mathbf{i}$ the work equals the area of R. When $M = \partial f/\partial x$ and $N = \partial f/\partial y$, the double integral is zero because $\mathbf{f}_{XY} = \mathbf{f}_{YX}$. The line integral is zero because $\mathbf{f}(\mathbf{Q}) = \mathbf{f}(\mathbf{P})$ when $\mathbf{Q} = \mathbf{P}$ (closed curve). An example is $\mathbf{F} = y\mathbf{i} + x\mathbf{j}$. The direction on C is counterclockwise around the boundary of a hole. If R is broken into very simple pieces with crosscuts between them, the integrals of $\mathbf{M} \, d\mathbf{x} + \mathbf{N} \, d\mathbf{y}$ cancel along the crosscuts.

Test D for gradient fields is $\partial \mathbf{M}/\partial \mathbf{y} = \partial \mathbf{N}/\partial \mathbf{x}$. A field that passes this test has $\oint \mathbf{F} \cdot d\mathbf{R} = 0$. There is a solution to $f_x = \mathbf{M}$ and $f_y = \mathbf{N}$. Then df = M dx + N dy is an exact differential. The spin field \mathbf{S}/r^2 passes test D except at $\mathbf{r} = \mathbf{0}$. Its potential $f = \theta$ increases by 2π going around the origin. The integral $\iint (N_x - M_y) dx dy$ is not zero but 2π .

The flow form of Green's Theorem is $\oint_C M dy - N dx = \iint_R (M_x + N_y) dx dy$. The normal vector in $\mathbf{F} \cdot \mathbf{n} ds$ points out across C and $|\mathbf{n}| = 1$ and $\mathbf{n} ds$ equals $dy \mathbf{i} - dx \mathbf{j}$. The divergence of $M\mathbf{i} + N\mathbf{j}$ is $M_x + N_y$. For $\mathbf{F} = x\mathbf{i}$ the double integral is $\iint \mathbf{1} d\mathbf{t} = \mathbf{area}$. There is a source. For $\mathbf{F} = y\mathbf{i}$ the divergence is zero. The divergence of \mathbf{R}/r^2 is zero except at $\mathbf{r} = 0$. This field has a point source.

A field with no source has properties $\mathbf{E} = \mathbf{z}\mathbf{e}\mathbf{r}\mathbf{o}$ flux through C, $\mathbf{F} = \mathbf{e}\mathbf{q}\mathbf{u}\mathbf{a}\mathbf{l}$ flux across all paths from P to Q, $\mathbf{G} = \mathbf{e}\mathbf{x}\mathbf{i}\mathbf{s}\mathbf{t}\mathbf{e}\mathbf{n}\mathbf{c}\mathbf{c}$ of stream function, $\mathbf{H} = \mathbf{z}\mathbf{e}\mathbf{r}\mathbf{o}$ divergence. The stream function g satisfies the equations $\partial \mathbf{g}/\partial \mathbf{y} = \mathbf{M}$ and $\partial \mathbf{g}/\partial \mathbf{x} = -\mathbf{N}$. Then $\partial M/\partial x + \partial N/\partial y = 0$ because $\partial^2 g/\partial x \partial y = \partial^2 \mathbf{g}/\partial y \partial \mathbf{x}$. The example $\mathbf{F} = y\mathbf{i}$ has $g = \frac{1}{2}\mathbf{y}^2$. There is not a potential function. The example $\mathbf{F} = x\mathbf{i} - y\mathbf{j}$ has $g = \mathbf{x}\mathbf{y}$ and also $f = \frac{1}{2}\mathbf{x}^2 - \frac{1}{2}\mathbf{y}^2$. This f satisfies Laplace's equation $\mathbf{f}_{\mathbf{X}\mathbf{X}} + \mathbf{f}_{\mathbf{Y}\mathbf{Y}} = \mathbf{0}$, because the field \mathbf{F} is both conservative and source-free. The functions f and g are connected by the Cauchy-Riemann equations $\partial f/\partial x = \partial g/\partial y$ and $\partial f/\partial y = -\partial g/\partial x$. $1 \int_{0}^{2\pi} (a \cos t) a \cos t \, dt = \pi a^{2}; N_{x} - M_{y} = 1, \int \int dx \, dy = \text{area } \pi a^{2}$ **3** $\int_0^1 x \, dx + \int_1^0 x \, dx = 0, N_x - M_y = 0, \int \int 0 \, dx \, dy = 0$ 5 $\int x^2 y \, dx = \int_0^{2\pi} (a \cos t)^2 (a \sin t) (-a \sin t \, dt) = -\frac{a^4}{4} \int_0^{2\pi} (\sin 2t)^2 dt = -\frac{\pi a^4}{4};$ $N_x - M_y = -x^2, \int \int (-x^2) dx \, dy = \int_0^{2\pi} \int_0^a -r^2 \cos^2 \theta \, r \, dr \, d\theta = -\frac{\pi a^4}{4}$ $7 \int x \, dy - y \, dx = \int_0^{\pi} (\cos^2 t + \sin^2 t) \, dt = \pi; \int \int (1+1) dx \, dy = 2 \text{ (area)} = \pi; \int x^2 dy - xy \, dx = \frac{1}{2} + 1;$ $\int_{0}^{1} \int_{0}^{1} (2x+x) dx dy = \frac{3}{2}$ 9 $\frac{1}{2} \int_{0}^{2\pi} (3\cos^4 t \sin^2 t + 3\sin^4 t \cos^2 t) dt = \frac{1}{2} \int_{0}^{2\pi} 3\cos^2 t \sin^2 t dt = \frac{3}{2} \frac{\pi}{4}$ (see Answer 5) 11 $\int \mathbf{F} \cdot d\mathbf{R} = 0$ around any loop; $\mathbf{F} = \frac{x}{r}\mathbf{i} + \frac{y}{r}\mathbf{j}$ and $\int \mathbf{F} \cdot d\mathbf{R} = \int_0^{2\pi} [-\sin t \cos t + \sin t \cos t] dt = 0$; $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$ gives $\iint 0 \, dx \, dy$ 13 $x = \cos 2t$, $y = \sin 2t$, t from 0 to 2π ; $\int_{0}^{2\pi} -2\sin^{2} 2t \, dt = -2\pi = -2$ (area); $\int_0^{2\pi} -2dt = -4\pi = -2 \text{ times Example 7}$ $15 \int M dy - N dx = \int_0^{2\pi} 2 \sin t \cos t \, dt = 0; \int \int (M_x + N_y) dx \, dy = \int \int 0 \, dx \, dy = 0$ 17 $M = \frac{x}{r}, N = \frac{y}{r}, \int M dy - N dx = \int_{0}^{2\pi} (\cos^2 t + \sin^2 t) dt = 2\pi; \int \int (M_x + N_y) dx dy = \int \int (\frac{1}{r} - \frac{x^2}{r^3} + \frac{1}{r} - \frac{y^2}{r^3}) dx dy = \int \int (\frac{1}{r} - \frac{x^2}{r^3} + \frac{1}{r} - \frac{y^2}{r^3}) dx dy = \int \int (\frac{1}{r} - \frac{x^2}{r^3} + \frac{1}{r} - \frac{y^2}{r^3}) dx dy = \int \int (\frac{1}{r} - \frac{x^2}{r^3} + \frac{1}{r} - \frac{y^2}{r^3}) dx dy = \int \int (\frac{1}{r} - \frac{x^2}{r^3} + \frac{1}{r} - \frac{y^2}{r^3}) dx dy = \int \int (\frac{1}{r} - \frac{x^2}{r^3} + \frac{1}{r} - \frac{y^2}{r^3}) dx dy = \int \int (\frac{1}{r} - \frac{x^2}{r^3} + \frac{1}{r} - \frac{y^2}{r^3}) dx dy = \int \int (\frac{1}{r} - \frac{x^2}{r^3} + \frac{1}{r} - \frac{y^2}{r^3}) dx dy = \int \int (\frac{1}{r} - \frac{x^2}{r^3} + \frac{1}{r} - \frac{y^2}{r^3}) dx dy = \int \int (\frac{1}{r} - \frac{x^2}{r^3} + \frac{1}{r} - \frac{y^2}{r^3}) dx dy = \int \int (\frac{1}{r} - \frac{x^2}{r^3} + \frac{1}{r} - \frac{y^2}{r^3}) dx dy = \int \int (\frac{1}{r} - \frac{x^2}{r^3} + \frac{1}{r} - \frac{y^2}{r^3}) dx dy = \int \int (\frac{1}{r} - \frac{x^2}{r^3} + \frac{1}{r} - \frac{y^2}{r^3}) dx dy = \int \int (\frac{1}{r} - \frac{x^2}{r^3} + \frac{1}{r} - \frac{y^2}{r^3}) dx dy = \int \int \frac{1}{r} \int \frac{1}{r} dx dx dx$ $\iint \frac{1}{x} dx dy = \iint dr d\theta = 2\pi$ 19 $\int M dy - N dx = \int -x^2 y \, dx = \int_1^0 -x^2 (1-x) dx = \frac{1}{12}; \int_0^1 \int_0^{1-y} x^2 dx \, dy = \frac{1}{12}$ 21 $\iint (M_x + N_y) dx dy = \iint \text{div } \mathbf{F} dx dy = 0$ between the circles 23 Work: $\int a \, dx + b \, dy = \int \int \left(\frac{\partial b}{\partial x} - \frac{\partial a}{\partial y}\right) dx \, dy$; Flux: same integral 25 $g = \tan^{-1}(\frac{y}{r}) = \theta$ is undefined at (0,0) **27** Test $M_y = N_x : x^2 dx + y^2 dy$ is exact $= d(\frac{1}{2}x^3 + \frac{1}{2}y^3)$ **31** div $\mathbf{F} = 2x + 2y$; no g **33** div $\mathbf{F} = 0$; $g = e^x \sin y$ **29** div $\mathbf{F} = 2y - 2y = 0; g = xy^2$ **35** div **F** = 0; $g = \frac{y^2}{r}$ **37** $N_x - M_y = -2x, -6xy, 0, 2x - 2y, 0, -2e^{x+y}$; in **31** and **33** $f = \frac{1}{3}(x^3 + y^3)$ and $f = e^x \cos y$ 41 $f = x^4 - 6x^2y^2 + y^4$; $g = 4x^3y - 4xy^3$ **39** $\mathbf{F} = (3x^2 - 3y^2)\mathbf{i} - 6xy \mathbf{j}; \text{div } \mathbf{F} = 0$ **43** $\mathbf{F} = e^x \cos y \mathbf{i} - e^x \sin y \mathbf{j}; g = e^x \sin y$ **45** $N = f(x), \int M dx + N dy = \int_0^1 f(1) dy + \int_1^0 f(0) dy = f(1) - f(0); \int \int (N_x - M_y) dx dy =$ $\int \int \frac{\partial f}{\partial x} dx \, dy = \int_0^1 \frac{\partial f}{\partial x} dx \text{ (Fundamental Theorem of Calculus)}$ **2** $\oint x^2 y \, dy = \int_0^{2\pi} a^2 \cos^2 t (a \sin t) (a \cos t \, dt) = 0; M = 0, N = x^2 y, \int \int 2xy \, dx \, dy =$ $\int_0^{2\pi} \int_0^a 2r \cos\theta (r \sin\theta) r dr \, d\theta = 0$ 4 § $y \, dx = \int_0^1 t(-dt) = -\frac{1}{2}; M = y, N = 0, \int \int (-1) dx \, dy = - \text{ area} = -\frac{1}{2}.$ **6** $\oint x^2 y \, dx = \int_0^1 (1-t)^2 t(-dt) = -\frac{1}{12}; M = x^2 y, N = 0, \int_0^1 \int_0^{1-y} -x^2 dx \, dy = -\int_0^1 \frac{(1-y)^3}{3} dy = -\frac{1}{12}.$ 8 $M = xy^2$ and $N = x^2y + 2x$ so $\oint Mdx + Ndy = \int \int [(2xy+2) - 2xy]dx dy = 2$ times area. 10 M = by and $N = cx : \oint M dx + N dy = \int \int (c - b) dx dy = (c - b)$ times area; b = 7 and c = 7 make the integral zero. 12 Let R be the square with base from a to b on the x axis. Set $\mathbf{F} = f(x)\mathbf{j}$ so M = 0 and N = f(x). The

- line integral $\oint M dx + N dy$ is $(\mathbf{b} \mathbf{a}) \mathbf{f}(\mathbf{b})$ up the right side minus $(\mathbf{b} \mathbf{a}) \mathbf{f}(\mathbf{a})$ down the left side. The double integral is $\int \int \frac{dt}{dx} dx \, dy = (\mathbf{b} \mathbf{a}) \int_{\mathbf{a}}^{\mathbf{b}} \frac{d\mathbf{f}}{d\mathbf{x}} d\mathbf{x}$. Green's Theorem gives equality; cancel b a.
- 14 $\int_P^Q \mathbf{S} \cdot d\mathbf{R} = \oint -\mathbf{y} \, d\mathbf{x} + \mathbf{x} \, d\mathbf{y}$ since the integrals along the axes are zero. By Green's Theorem this is $\iint \mathbf{2} d\mathbf{x} \, d\mathbf{y} = 2$ times area between path and axes.
- 16 $\oint \mathbf{F} \cdot \mathbf{n} ds = \int xy \, dy = \frac{1}{2}$ up the right side of the square where $\mathbf{n} = \mathbf{i}$ (other sides give zero). Also $\int_0^1 \int_0^1 (y+0) dx \, dy = \frac{1}{2}$.
- 18 In the double integral $M_x = \frac{\partial}{\partial x} \left(\frac{-y}{\sqrt{x^2 + y^2}} \right) = \frac{xy}{(x^2 + y^2)^{3/2}}$ and $N_y = \frac{\partial}{\partial y} \left(\frac{x}{\sqrt{x^2 + y^2}} \right) = \frac{-xy}{(x^2 + y^2)^{3/2}}$

so $M_x + N_y = 0$: Double integral = 0. Along the bottom edge (where y = 0 and n = -j) the line integral is $\int \frac{S}{r} \cdot n \, ds = \int_0^1 \frac{-x \, dx}{\sqrt{x^2 + 0^2}} = -1$. The right side (x = 1 and n = i) yields $\int_0^1 \frac{-y \, dy}{\sqrt{1^2 + y^2}} = -\sqrt{1 + y^2} \Big|_0^1 = 1 - \sqrt{2}$. Back across the top $(y = 1, n = j, notice ds = -dx!) \int_1^0 \frac{-x dx}{\sqrt{x^2 + 1^2}} = \sqrt{2} - 1$. Down the left side (notice ds = -dy! gives +1. Adding the four sides $\oint \frac{S}{s} \cdot \mathbf{n} \, ds = 0$. 20 $\mathbf{F} = \operatorname{grad} \mathbf{r} = \begin{pmatrix} \underline{x} \\ \underline{x} \end{pmatrix}$ has $\mathbf{F} \cdot \mathbf{n} = 0$ along the x axis where $\mathbf{n} = -\mathbf{j}$ and y = 0. On the unit circle **n** is equal to **F** (unit vector pointing outward) so $\mathbf{F} \cdot \mathbf{n} = 1$. Around the semicircle $\oint \mathbf{F} \cdot \mathbf{n} ds = \int_0^{\pi} 1 d\theta = \pi$. The double integral has $M_x = \frac{\partial}{\partial x} \left(\frac{x}{r}\right) = \frac{1}{r} - \frac{x}{r^2} \frac{\partial r}{\partial x} = \frac{r^2}{r^3} - \frac{x^2}{r^3} = \frac{y^2}{r^3}$. Similarly $N_y = \frac{\partial}{\partial y} \left(\frac{y}{r} \right) = \frac{x^2}{r^3}$ and $M_x + N_y = \frac{r^2}{r^3} = \frac{1}{r}$. The double integral is $\int_0^{\pi} \int_0^1 \frac{1}{r} (r \, dr \, d\theta) = \pi$. 22 § $\mathbf{F} \cdot \mathbf{n} \, ds$ is the same through a square and a circle because the difference is $\int \int (\frac{\partial M}{\partial x} + \frac{\partial N}{\partial y}) dx \, dy =$ $\iint \operatorname{div} \mathbf{F} dx \, dy = 0 \text{ over the region in between.}$ 24 $\oint (\cos^3 y \, dy - \sin^3 x \, dx) = \iint (0 - 0) dx \, dy = 0$. A different example would be more revealing. 26 div $\frac{S}{r^2} = \frac{\partial}{\partial x} \left(\frac{-y}{x^2 + y^2} \right) + \frac{\partial}{\partial y} \left(\frac{x}{x^2 + y^2} \right) = \frac{-2xy + 2yx}{(x^2 + y^2)^2} = 0$. Integrating $\frac{y}{x^2 + y^2}$ gives $g = \frac{1}{2} \ln \left(x^2 + y^2 \right) = \ln r$. This is infinite at x = y = 0. 28 $\frac{\partial q}{\partial u} = M$ and $\frac{\partial q}{\partial x} = -N$ are compatible when $M_x + N_y = \mathbf{g}_{\mathbf{y}\mathbf{x}} - \mathbf{g}_{\mathbf{x}\mathbf{y}} = \mathbf{0}$. If also $N_x = M_y$ then $\mathbf{g}_{\mathbf{XX}} + \mathbf{g}_{\mathbf{YY}} = -N_x + M_y = \mathbf{0}$ and g solves Laplace's equation. **30** $\frac{\partial M}{\partial x} + \frac{\partial N}{\partial y} = 3y^2 - 3y^2 = 0$. Solve $\frac{\partial g}{\partial y} = 3xy^2$ for $g = xy^3$ and check $\frac{\partial g}{\partial x} = y^3$. **32** $\frac{\partial M}{\partial x} + \frac{\partial N}{\partial y} = 0 + 0$. Solve $\frac{\partial g}{\partial y} = y^2$ for $g = \frac{1}{3}y^3 + C(x)$ and add $C(x) = \frac{1}{3}x^3$ to give $\frac{\partial g}{\partial x} = x^2$. Then $g = \frac{1}{4}(y^3 + x^3)$. **34** $\frac{\partial M}{\partial x} + \frac{\partial N}{\partial y} = e^{x+y} - e^{x+y} = 0$. Solve $\frac{\partial g}{\partial y} = e^{x+y}$ for $g = e^{x+y}$ and check $\frac{\partial g}{\partial x} = e^{x+y}$. **36** $\frac{\partial M}{\partial x} + \frac{\partial N}{\partial y} = y + x \neq 0$ (no stream function). **38** $g(Q) = \int_{P}^{Q} \mathbf{F} \cdot \mathbf{n} ds$ starting from g(P) = 0. Any two paths give the same integral because forward on one and back on the other gives $\int \mathbf{F} \cdot \mathbf{n} \, ds = 0$, provided the tests E - H for a stream function are passed. 40 With $M_x + N_y = 0$ we can solve $\partial g/\partial y = M = 3x^2 - 3y^2$ and $\partial g/\partial x = -M = 6xy$ to find $g = 3x^2y - y^3$. Then $f_x = g_y = M$ and $f_y = -g_x = N$. 42 Mdy - Ndx is an exact differential if $\frac{\partial M}{\partial x} = -\frac{\partial N}{\partial y}$. (Then there is a stream function g.)

- 44 $\oint \int \mathbf{S} \cdot d\mathbf{R} = \oint -y \, dx + x \, dy = \mathbf{2} \times \operatorname{area} \neq 0.$
- 46 Simply connected: 2, 3, 6(?), 7. The other regions contain circles that can't shrink to points.

15.4 Surface Integrals (page 581)

A small piece of the surface z = f(x, y) is nearly flat. When we go across by dx, we go up by $(\partial z/\partial x)dx$. That movement is Adx, where the vector A is i + dz/dx k. The other side of the piece is Bdy, where $B = j + (\partial z/\partial y)k$. The cross product $A \times B$ is $N = -\partial z/\partial x i - \partial z/\partial y j + k$. The area of the piece is dS = |N|dx dy. For the surface x = xy, the vectors are $A = \iint \sqrt{1 + x^2 + y^2} dx dy$ and N = -y i - x + k. The area integral is $\iint dS = i + y k$.

With parameters u and v, a typical point on a 45° cone is $x = u \cos v$, $y = u \sin v$, z = u. A change in u moves that point by $\mathbf{A} d\mathbf{u} = (\cos v \mathbf{i} + \sin v \mathbf{j} + \mathbf{k}) du$. The change in v moves the point by $\mathbf{B} dv =$ $(-u \sin v \mathbf{i} + u \cos v \mathbf{j}) dv$. The normal vector is $\mathbf{N} = \mathbf{A} \times \mathbf{B} = -u \cos v \mathbf{i} - u \sin v \mathbf{j} + u \mathbf{k}$. The area is $dS = \sqrt{2} u du dv$. In this example $\mathbf{A} \cdot \mathbf{B} - \mathbf{0}$ so the small piece is a a rectangle and $dS = |\mathbf{A}| |\mathbf{B}| du dv$.

For flux we need ndS. The unit normal vector n is $N = A \times B$ divided by |N|. For a surface z = f(x, y),

the product $\mathbf{n}dS$ is the vector $\mathbf{N} dx dy$ (to memorize from table). The particular surface z = xy has $\mathbf{n}dS = (-\mathbf{y}\mathbf{i} - \mathbf{x}\mathbf{j} + \mathbf{k})dx dy$. For $\mathbf{F} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ the flux through z = xy is $\mathbf{F} \cdot \mathbf{n}dS = -\mathbf{x}\mathbf{y} dx dy$.

On a 30° cone the points are $x = 2u \cos v$, $y = 2u \sin v$, z = u. The tangent vectors are $\mathbf{A} = 2 \cos v \mathbf{i} + 2 \sin v \mathbf{j} + \mathbf{k}$ and $\mathbf{B} = -2 u \sin v \mathbf{i} + 2 u \cos v \mathbf{j}$. This cone has $\mathbf{n}dS = \mathbf{A} \times \mathbf{B} \, du \, dv = (-2u \cos v \mathbf{i} - 2u \sin v \mathbf{j} + 4u \mathbf{k}) du \, dv$. For $\mathbf{F} = x \mathbf{i} + y \mathbf{j} + z \mathbf{k}$, the flux element through the cone is $\mathbf{F} \cdot \mathbf{n}dS = \mathbf{z}\mathbf{e}\mathbf{r}\mathbf{o}$. The reason for this answer is that \mathbf{F} is along the cone. The reason we don't compute flux through a Möbius strip is that N cannot be defined (the strip is not orientable).

$$1 N = -2xi - 2yj + k; dS = \sqrt{1 + 4x^{2} + 4y^{2}} dx dy; \int_{0}^{2\pi} \int_{0}^{2} \sqrt{1 + 4r^{2}} r dr d\theta = \frac{\pi}{6} (17^{3/2} - 1)$$

$$3 N = -i + j + k; dS = \sqrt{3} dx dy; area \sqrt{3}\pi$$

$$5 N = \frac{-xi - uj}{\sqrt{1 - x^{2} - y^{2}}} + k; dS = \frac{dx dy}{\sqrt{1 - x^{2} - y^{2}}}; \int_{0}^{2\pi} \int_{0}^{1/\sqrt{2}} \frac{r dr d\theta}{\sqrt{1 - r^{2}}} = \pi (2 - \sqrt{2})$$

$$7 N = -7j + k; dS = 5\sqrt{2} dx dy; area 5\sqrt{2}A$$

$$9 N = (y^{2} - x^{2})i - 2xyj + k; dS = \sqrt{1 + (y^{2} - x^{2})^{2} + 4x^{2}y^{2}} dx dy = \sqrt{1 + (y^{2} + x^{2})^{2}} dx dy;$$

$$\int_{0}^{2\pi} \int_{0}^{1} \sqrt{1 + r^{4}} r dr d\theta = \frac{\pi}{\sqrt{2}} + \frac{\pi \ln(1 + \sqrt{2})}{2}$$

$$11 N = 2i + 2j + k; dS = 3dx dy; 3 (area of triangle with $2x + 2y \le 1) = \frac{3}{8}$

$$13 \pi a\sqrt{a^{2} + h^{2}}$$

$$15 \int_{0}^{1} \int_{0}^{1 - y} xy(\sqrt{3} dx dy) = \frac{\sqrt{3}}{24}$$

$$17 \int_{0}^{2\pi} \int_{0}^{\pi/4} \sin^{2} \phi \cos \phi \sin \theta \cos \theta (\sin \phi d\phi d\theta) = 0$$

$$19 A = i + j + 2k; B = j + k; N = -i - j + k; dS = \sqrt{3} du dv$$

$$21 A = -\sin u(\cos v i + \sin v j) + \cos u k; B = -(3 + \cos u) \sin v i + (3 + \cos u) \cos v j;$$

$$N = -(3 + \cos u)(\cos u \cos v i + \cos u \sin v j + \sin u k); dS = (3 + \cos u)du dv$$

$$23 \iint (-M \frac{\partial f}{\partial x} - N \frac{\partial f}{\partial y} + P) dx dy = \iint (-2x^{2} - 2y^{2} + z) dx dy = \iint (-r^{2}(r dr d\theta)) = -8\pi$$

$$25 F \cdot N = -x + y + z = 0 \text{ on plane}$$

$$27 N = -i - j + k, F = (v + u) i - u j, \iint F \cdot N dS = \iint -v du dv = 0$$

$$29 \iint dS = \int_{0}^{2\pi} \int_{0}^{2\pi} (3 + \cos u) du dv = 12\pi^{2}$$

$$31 Yes$$

$$33 No$$

$$35 A = i + f' \cos \theta j + f' \sin \theta k; B = -f \sin \theta j + f \cos \theta k; N = ff'i - f \cos \theta j - f \sin \theta k; dS = |N| dx d\theta = f(x)\sqrt{1 + f'^{2}} dx d\theta$$$$

$$2 N = -2x i - 2y j + k \text{ and } dS = \sqrt{1 + 4x^2} + 4y^2 dx dy. \text{ Then } \iint dS = \int_0^{2\pi} \int_2^{\sqrt{8}} \sqrt{1 + 4r^2} r dr d\theta = \frac{\pi}{6} (33^{3/2} - 17^{3/2}).$$

$$4 N = -3i - 4j + k \text{ and } dS = \sqrt{26} dx dy. \text{ Then area} = \int_0^1 \int_0^1 \sqrt{26} dx dy = \sqrt{26}.$$

$$6 N = -\frac{xi}{\sqrt{1-x^2-y^2}} - \frac{yi}{\sqrt{1-x^2-y^2}} + k \text{ and } dS = \frac{dx dy}{\sqrt{1-x^2-y^2}}. \text{ Then area} = \int_0^{2\pi} \int_1^1 \sqrt{2} \frac{rdr d\theta}{\sqrt{1-r^2}} = [-2\pi\sqrt{1-r^2}]_{1/\sqrt{2}}^1 = \sqrt{2\pi}.$$

$$8 N = -\frac{xi}{r} - \frac{yi}{r} + k \text{ and } dS = \frac{x^2+y^2+r^2}{r^2} dx dy = \sqrt{2} dx dy. \text{ Then area} = \int_0^{2\pi} \int_a^b \sqrt{2}r dr d\theta = \sqrt{2}\pi (b^2 - a^2)$$

$$10 N = -i - j + k \text{ and } dS = \sqrt{3} dx dy. \text{ Then surface area} = \sqrt{3} \text{ times base area} = 2\sqrt{3}.$$

$$12 z = \sqrt{a^2 - x^2} \text{ gives } N = \frac{-xi}{\sqrt{a^2 - x^2}} + k \text{ and } dS = \frac{a dx dy}{\sqrt{a^2 - x^2}}. \text{ Then area} = 4 \int_0^a \int_0^0 \sqrt{a^2 - y^2} \frac{a dx dy}{\sqrt{a^2 - x^2}}.$$

$$14 N = -2xi + k \text{ and } dS = \sqrt{1 + 4x^2} dx dy. \text{ Area} = \int_{-2}^2 \int_0^3 \sqrt{1 + 4x^2} dx dy = 4 \int_0^3 \sqrt{1 + 4x^2} dx = 8 \int_0^3 \sqrt{(\frac{1}{2})^2 + x^2} dx = 8[\frac{x}{2}\sqrt{x^2 + (\frac{1}{2})^2} + \frac{1}{8} \ln |x + \sqrt{x^2 + (\frac{1}{2})^2}|]_0^3 = 12\sqrt{9.25} + \ln |3 + \sqrt{9.25}| - (\ln \frac{1}{2}) = 39.$$

$$16 \text{ On the sphere } dS = \sin \phi d\phi d\theta \text{ and } g = x^2 + y^2 = \sin^2 \phi. \text{ Then } \int_0^{2\pi} \int_0^{\pi/2} \sin^3 \phi d\phi d\theta = 2\pi(\frac{2}{3}) = \frac{4\pi}{3}.$$

$$18 x = 2\cos v, y = 2\sin v, \text{ and } dS = 2du dv. \text{ Then } \iint g dS = \int_0^{2\pi} \int_0^3 2\cos v(2du dv) = 0.$$

$$20 A = vi + j + k, B = ui + j - k, N = A \times B = -2i + (u + v)j + (v - u)k, dS = \sqrt{4 + 2u^2 + 2v^2} du dv.$$

$$22 A = \cos v i + \sin v j, B = -u \sin v i + u \cos v j + k, N = \sin v i - \cos v j + uk, dS = \sqrt{2} du dv.$$

$$24 \iint F \cdot ndS = \int_0^{2\pi} \int_0^{\sqrt{6}} -r^3 dr d\theta = -24\pi.$$

$$26 \iint F \cdot ndS = \iint 0 dS = 0.$$

28 $\mathbf{F} \cdot \mathbf{n} dS = ((u+v)\mathbf{i} - uv\mathbf{j}) \cdot (-2\mathbf{i} + (u+v)\mathbf{j} + (v-u)\mathbf{k}) du dv = (2\mathbf{u} + 2\mathbf{v} - \mathbf{u}^2\mathbf{v} - \mathbf{v}^2\mathbf{u}) d\mathbf{u} d\mathbf{v}.$ Integrate with $u = r\cos\theta$, $v = r\sin\theta$: $\int_0^{2\pi} \int_0^1 (2r\cos\theta + 2r\sin\theta - r^3\cos^2\theta\sin\theta - r^3\sin^2\theta\cos\theta) r dr d\theta = 0.$

 $\mathbf{30} \mathbf{A} = \cos\theta \mathbf{i} + \sin\theta \mathbf{j} - 2r\mathbf{k}, \mathbf{B} = -r\sin\theta \mathbf{i} + r\cos\theta \mathbf{j}, \mathbf{N} = \mathbf{A} \times \mathbf{B} = 2r^2\cos\theta \mathbf{i} + 2r^2\sin\theta \mathbf{j} + r\mathbf{k},$

 $\iint \mathbf{k} \cdot \mathbf{n} \, dS = \iint \mathbf{k} \cdot \mathbf{N} du \, dv = \int_0^{2\pi} \int_0^a r dr \, d\theta = \pi \mathbf{a}^2 \text{ as in Example 12.}$

32 I think a "triple Möbius strip" is orientable.

34 The plane z = ax + by has roof area $= \sqrt{a^2 + b^2}$ times base area. So choose for example a = 1 and $b = \sqrt{2}$.

15.5 The Divergence Theorem (page 588)

In words, the basic balance law is flow in = flow out. The flux of **F** through a closed surface S is the double integral $\iint \mathbf{F} \cdot \mathbf{ndS}$. The divergence of $M\mathbf{i} + N\mathbf{j} + P\mathbf{k}$ is $\mathbf{M}_{\mathbf{X}} + \mathbf{N}_{\mathbf{y}} + \mathbf{P}_{\mathbf{S}}$, and it measures the source at the point. The total source is the triple integral \iiint div **F** dV. That equals the flux by the Divergence Theorem.

For $\mathbf{F} = 5\mathbf{z}\mathbf{k}$ the divergence is 5. If V is a cube of side a then the triple integral equals $5\mathbf{a}^3$. The top surface where $\mathbf{z} = a$ has $\mathbf{n} = \mathbf{k}$ and $\mathbf{F} \cdot \mathbf{n} = 5a$. The bottom and sides have $\mathbf{F} \cdot \mathbf{n} = \mathbf{z}\mathbf{e}\mathbf{r}\mathbf{o}$. The integral $\iint \mathbf{F} \cdot \mathbf{n}dS$ equals $5\mathbf{a}^3$.

The field $\mathbf{F} = \mathbf{R}/\rho^3$ has div $\mathbf{F} = 0$ except at the origin. $\iint \mathbf{F} \cdot \mathbf{n} dS$ equals 4π over any surface around the origin. This illustrates Gauss's Law: flux = 4π times source strength. The field $\mathbf{F} = x \mathbf{i} + y \mathbf{j} - 2z \mathbf{k}$ has div $\mathbf{F} = \mathbf{0}$ and $\iint \mathbf{F} \cdot \mathbf{n} dS = \mathbf{0}$. For this \mathbf{F} , the flux out through a pyramid and in through its base are equal.

The symbol ∇ stands for $(\partial/\partial \mathbf{x})\mathbf{i} + (\partial/\partial \mathbf{y})\mathbf{j} + (\partial/\partial \mathbf{z})\mathbf{k}$. In this notation div **F** is $\nabla \cdot \mathbf{F}$. The gradient of f is ∇f . The divergence of grad f is $\nabla \cdot \nabla f$ or $\nabla^2 f$. The equation div grad f = 0 is Laplace's equation.

The divergence of a product is $\operatorname{div}(u\mathbf{V}) = \mathbf{u} \operatorname{div} \mathbf{V} + (\operatorname{grad} \mathbf{u}) \cdot \mathbf{V}$. Integration by parts in 3D is $\iiint u \operatorname{div} \mathbf{V} dx dy dz = -\iiint \mathbf{V} \cdot \operatorname{grad} \mathbf{u} d\mathbf{x} d\mathbf{y} d\mathbf{z} + \iiint \mathbf{V} \cdot \mathbf{n} d\mathbf{S}$. In two dimensions this becomes $\iint \mathbf{u}(\partial \mathbf{M}/\partial \mathbf{x} + \partial \mathbf{N}/\partial \mathbf{y}) d\mathbf{x} d\mathbf{y} = -\int (\mathbf{M} \partial \mathbf{u}/\partial \mathbf{x} + \mathbf{N} \partial \mathbf{u}/\partial \mathbf{y}) d\mathbf{x} d\mathbf{y} + \int \mathbf{u} \mathbf{V} \cdot \mathbf{n} d\mathbf{s}$. In one dimension it becomes integration by parts. For steady fluid flow the continuity equation is div $\rho \mathbf{V} = -\partial \rho/\partial t$.

1 div $\mathbf{F} = 1, \int \int \int dV = \frac{4\pi}{3}$ 3 div $\mathbf{F} = 2x + 2y + 2z, \int \int \int dV = 0$ 5 div $\mathbf{F} = 3, \int \int 3dV = \frac{3}{6} = \frac{1}{2}$ 7 $\mathbf{F} \cdot \mathbf{N} = \rho^2, \int \int_{\rho=a} \rho^2 dS = 4\pi a^4$ 9 div $\mathbf{F} = 2z, \int_0^{2\pi} \int_0^{\pi/2} \int_0^a 2\rho \cos\phi(\rho^2 \sin\phi dp d\phi d\theta) = \frac{1}{2}\pi a^4$ 11 $\int_0^a \int_0^a \int_0^a (2x+1) dx dy dz = a^4 + a^3; -2a^2 + 2a^2 + 0 + a^4 + 0 + a^3$ 13 div $\mathbf{F} = \frac{x}{\rho}, \int \int \int \frac{x}{\rho} dV = 0; \mathbf{F} \cdot \mathbf{n} = x, \int \int x dS = 0$ 15 div $\mathbf{F} = 1; \int \int \int 1 dV = \frac{\pi}{3}; \int \int \int 1 dV = \frac{1}{6}$ 17 div $(\frac{\mathbf{R}}{\rho^7}) = \frac{\mathrm{div} \mathbf{R}}{\rho^7} + \mathbf{R} \cdot \mathrm{grad} \frac{1}{\rho^7} = \frac{3}{\rho^7} - \frac{7}{\rho^8} \mathbf{R} \cdot \mathrm{grad} \rho$ 19 Two spheres, **n** radial out, **n** radial in, **n** = **k** on top, **n** = -**k** on bottom, **n** = $\frac{x\mathbf{i}+y\mathbf{i}}{\sqrt{x^2+y^2}}$ on side; **n** = -**i**, -**j**, -**k**, **i** + 2**j** + 3**k** on 4 faces; **n** = **k** on top, **n** = $\frac{1}{\sqrt{2}}(\frac{x}{r}\mathbf{i} + \frac{y}{r}\mathbf{j} - \mathbf{k})$ on cone 21 $V = \mathrm{cylinder}, \int \int \int \mathrm{div} \mathbf{F} dV = \int \int (\frac{\partial M}{\partial x} + \frac{\partial N}{\partial y}) dx dy$ (*z* integral = 1); $\int \int \mathbf{F} \cdot \mathbf{n} dS = \int M dy - N dx, z$ integral = 1 on side, $\mathbf{F} \cdot \mathbf{n} = 0$ top and bottom; Green's flux theorem. 23 div $\mathbf{F} = \frac{-3GM}{a^3} = -4\pi G$; at the center; $\mathbf{F} = 2\mathbf{R}$ inside, $\mathbf{F} = 2(\frac{\alpha}{\rho})^3 \mathbf{R}$ outside 25 div $\mathbf{u}_r = \frac{2}{\rho}, q = \frac{2\epsilon_n}{\rho}, \int \int \mathbf{E} \cdot \mathbf{n} dS = \int \int 1 dS = 4\pi$ 27 \mathbf{F} (div $\mathbf{F} = 0$); \mathbf{F} ; $\mathbf{T}(\mathbf{F} \cdot \mathbf{n} \le 1)$; \mathbf{F} **29** Plane circle: top half of sphere; div $\mathbf{F} = 0$

- $2 \iint \mathbf{F} \cdot \mathbf{n} dS = \iiint 0 \, dV = \mathbf{0}$
- 4 $\iint \mathbf{F} \cdot \mathbf{n} dS = \int_0^1 \int_0^1 \int_0^1 (2x + 2y + 2z) dx \, dy \, dz = 1 + 1 + 1 = \mathbf{S}.$ 6 $\iint \mathbf{F} \cdot \mathbf{n} dS = (\text{directly}) \iint dS = 4\pi \mathbf{a}^2$. By the Divergence Theorem: $\int_0^{2\pi} \int_0^\pi \int_0^a \frac{2}{\rho} \rho^2 \sin \phi \, d\rho \, d\phi \, d\theta = 4\pi a^2$ $\mathbf{8} \iint \mathbf{F} \cdot \mathbf{n} dS = \int_0^{2\pi} \int_0^{\pi} \int_0^a 3\rho^4 \sin \phi d\rho \ d\phi \ d\theta = \frac{12\pi}{5} \mathbf{a}^5.$
- 10 div $\mathbf{F} = 0 + xe^y \sin z xe^y \sin z = 0$ so $\iint \mathbf{F} \cdot \mathbf{n} dS = 0$.
- 12 An integral over a box with small side a is near ca^3 . Here div $\mathbf{F} = 2x + 1$ has integral $a^4 + a^3$, which is near a^3 because a is small. Then c = 1, which equals div F on the plane x = 0.
- 14 $\mathbf{R} \cdot \mathbf{n} = (x\mathbf{i} + y\mathbf{j} + z\mathbf{k}) \cdot \mathbf{i} = x = 1$ on one face of the box. On the five other faces $\mathbf{R} \cdot \mathbf{n} = 2, 3, 0, 0, 0$. The integral is $\int_0^3 \int_0^2 1 dy \, dz + \int_0^3 \int_0^1 2 dx \, dz + \int_0^2 \int_0^1 3 dx \, dy = 18$. Also div $\mathbf{R} = 1 + 1 + 1 = 3$ and $\int_0^3 \int_0^2 \int_0^1 3dx \, dy \, dz = 18.$
- 16 The normal vectors to the cube are $\mathbf{n} = \pm \mathbf{i}, \pm \mathbf{j}, \pm \mathbf{k}$. Then $\iint \mathbf{F} \cdot \mathbf{n} dS = \int_0^1 \int_0^1 x \, dx \, dy + \int_0^1 \int_0^1 (-x) dx \, dy + \int_0^1 \int_0^1 x \, dx \, dz + \int_0^1 \int_0^1 (-x) dx \, dx + \int_0^1 \int_0^1 0 dy \, dz + \int_0^1 \int_0^1 1 dy \, dz = \mathbf{1}$. Also $\iiint \mathrm{F} dV = \int_0^1 \int_0^1 \int_0^1 1 dx \, dy \, dz = \mathbf{1}$.
- 18 grad $f \cdot \mathbf{n}$ is the directional derivative in the normal direction \mathbf{n} (also written $\frac{\partial f}{\partial \mathbf{n}}$). The Divergence Theorem gives $\iiint dv \pmod{f} dV = \iint \operatorname{grad} f \cdot \mathbf{n} dS = \iint \frac{\partial f}{\partial n} dS$. But we are given that div (grad f) = $f_{xx} + f_{yy} + f_{zz}$ is zero.
- 20 Suppose **F** is perpendicular to **n** on the surface; then $\iint \mathbf{F} \cdot \mathbf{n} dS = 0$. Example on the unit sphere: **F** is any q(x, y, z) times the spin field $-y\mathbf{i} + x\mathbf{j}$.
- 22 The spin field $\mathbf{F} = -y\mathbf{i} + x\mathbf{j}$ has div $\mathbf{F} = 0$ and $\mathbf{F} \cdot \mathbf{n} = 0$ on the unit sphere.
- 24 The flux of $\mathbf{F} = \mathbf{R}/\rho^3$ through an area A on a sphere of radius ρ is A/ρ^2 , because $|\mathbf{F}| = 1/\rho^2$ and \mathbf{F} is outward. The spherical box has $A/\rho^2 = \sin \phi d\phi d\theta$ on both faces (minus sign for face pointing in). No flow through sides of box perpendicular to \mathbf{F} . So net flow = sero.
- **26** When the density ρ is constant (incompressible flow), the continuity equation becomes div V = 0. If the flow is irrotational then $\mathbf{F} = \operatorname{grad} f$ and the continuity equation is div $(\rho \operatorname{grad} f) = -d\rho/dt$. If also $\rho = \text{constant}$, then div grad $\mathbf{f} = \mathbf{0}$: Laplace's equation for the "potential."
- 28 Extend E-F-G-H in Section 15.3 to 3 dimensions: E The total flux $\int \int \mathbf{F} \cdot \mathbf{n} dS$ through every closed surface is zero F. Through all surfaces with the same boundary $\iint \mathbf{F} \cdot \mathbf{n} dS$ is the same

G There is a stream field g for which $\mathbf{F} = \operatorname{curl} \mathbf{g}$ H. The divergence of F is zero (this is the quick test).

30 The boundary of a solid ball is a sphere. A sphere has no boundary. Similarly for a cube or a cylinder - the boundary is a closed surface and that surface's boundary is empty. This is a crucial fact in topology.

(page 595) Stokes' Theorem and the Curl of F 15.6

The curl of $M\mathbf{i} + N\mathbf{j} + P\mathbf{k}$ is the vector $(\mathbf{P}_{\mathbf{y}} - \mathbf{N}_{\mathbf{z}})\mathbf{i} + (\mathbf{M}_{\mathbf{z}} - \mathbf{P}_{\mathbf{x}})\mathbf{j} + (\mathbf{N}_{\mathbf{x}} - \mathbf{M}_{\mathbf{y}})\mathbf{k}$. It equals the 3 by 3 determinant $\begin{vmatrix} \partial/\partial x & \partial/\partial y & \partial/\partial z \\ M & N & P \end{vmatrix}$ The curl of $x^2\mathbf{i} + z^2\mathbf{k}$ is zero. For $\mathbf{S} = y\mathbf{i} - (x+z)\mathbf{j} + y\mathbf{k}$ the curl is 2i - 2k. This S is a spin field $a \times R = \frac{1}{2}(\operatorname{curl} F) \times R$, with axis vector a = i - k. For any gradient field $f_x \mathbf{i} + f_y \mathbf{j} + f_z \mathbf{k}$ the curl is zero. That is the important identity curl grad f = zero. It is based on $f_{xy} = f_{yx}$ and

 $f_{XZ} = f_{ZX}$ and $f_{YZ} = f_{ZY}$. The twin identity is div curl $\mathbf{F} = 0$.

The curl measures the spin (or turning) of a vector field. A paddlewheel in the field with its axis along n has turning speed $\frac{1}{2}n \cdot \text{curl } \mathbf{F}$. The spin is greatest when n is in the direction of curl \mathbf{F} . Then the angular velocity is $\frac{1}{2}|$ curl $\mathbf{F}|$.

Stokes' Theorem is $\oint_C \mathbf{F} \cdot d\mathbf{R} = \iint_S (\operatorname{curl} \mathbf{F}) \cdot \mathbf{n} \, d\mathbf{S}$. The curve *C* is the boundary of the surface *S*. This is Green's Theorem extended to three dimensions. Both sides are zero when **F** is a gradient field because the curl is zero.

The four properties of a conservative field are $\mathbf{A} : \oint \mathbf{F} \cdot d\mathbf{R} = 0$ and $\mathbf{B} : \int_{\mathbf{P}}^{\mathbf{Q}} \mathbf{F} \cdot d\mathbf{R}$ depends only on \mathbf{P} and \mathbf{Q} and $\mathbf{C} : \mathbf{F}$ is the gradient of a potential function $f(\mathbf{x}, \mathbf{y}, \mathbf{z})$ and $\mathbf{D} : \operatorname{curl} \mathbf{F} = 0$. The field $y^2 z^2 \mathbf{i} + 2xy^2 z \mathbf{k}$ fails test \mathbf{D} . This field is the gradient of no \mathbf{f} . The work $\int \mathbf{F} \cdot d\mathbf{R}$ from (0,0,0) to (1,1,1) is $\frac{3}{5}$ along the straight path $\mathbf{x} = \mathbf{y} = \mathbf{z} = \mathbf{t}$. For every field \mathbf{F} , $\iint \operatorname{curl} \mathbf{F} \cdot \mathbf{n} dS$ is the same out through a pyramid and up through its base because they have the same boundary, so $\oint \mathbf{F} \cdot d\mathbf{R}$ is the same.

3 curl **F** = 0 **5** curl **F** = 0 **7** $f = \frac{1}{2}(x+y+z)^2$ $1 \operatorname{curl} \mathbf{F} = \mathbf{i} + \mathbf{j} + \mathbf{k}$ 9 curl $x^m \mathbf{i} = 0$; $x^n \mathbf{j}$ has zero curl if n = 011 curl $\mathbf{F} = 2y\mathbf{i}$; $\mathbf{n} = \mathbf{j}$ on circle so $\int \int \mathbf{F} \cdot \mathbf{n} dS = 0$ **13** curl $\mathbf{F} = 2\mathbf{i} + 2\mathbf{j}, \mathbf{n} = \mathbf{i}, \int \int \text{curl } \mathbf{F} \cdot \mathbf{n} dS = \int \int 2 \, dS = 2\pi$ 15 Both integrals equal $\int \mathbf{F} \cdot d\mathbf{R}$; Divergence Theorem, V = region between S and T, always div curl $\mathbf{F} = 0$ **19** f = xz + y **21** $f = e^{x-z}$ **23** $\mathbf{F} = y\mathbf{k}$ 17 Always div curl $\mathbf{F} = 0$ **25** curl $\mathbf{F} = (a_3b_2 - a_2b_3)\mathbf{i} + (a_1b_3 - a_3b_1)\mathbf{j} + (a_2b_1 - a_1b_2)\mathbf{k}$ **27** curl $\mathbf{F} = 2\omega\mathbf{k}$; curl $\mathbf{F} = \frac{\mathbf{i}+\mathbf{j}+\mathbf{k}}{\sqrt{3}} = 2\omega/\sqrt{3}$ **29** $\mathbf{F} = x(a_3z + a_2y)\mathbf{i} + y(a_1x + a_3z)\mathbf{j} + z(a_1x + a_2y)\mathbf{k}$ **31** curl $\mathbf{F} = -2\mathbf{k}, \int \int -2\mathbf{k} \cdot \mathbf{R} dS = \int_0^{2\pi} \int_0^{\pi/2} -2\cos\phi(\sin\phi \, d\phi \, d\theta) = -2\pi; \int y \, dx - x \, dy =$ $\int_0^{2\pi} (-\sin^2 t - \cos^2 t) dt = -2\pi$ **33** curl $\mathbf{F} = 2\mathbf{a}, 2 \iint (a_1 x + a_2 y + a_3 z) dS = 0 + 0 + 2a_3 \int_0^{2\pi} \int_0^{\pi/2} \cos \phi \sin \phi \, d\phi \, d\theta = 2\pi a_3$ **35** curl $\mathbf{F} = -\mathbf{i}, \mathbf{n} = \frac{\mathbf{i} + \mathbf{j} + \mathbf{k}}{\sqrt{3}}, \iint \mathbf{F} \cdot \mathbf{n} dS = -\frac{1}{\sqrt{3}} \pi r^2$ 37 $g = \frac{y^2}{2} - \frac{x^3}{3} =$ stream function; zero divergence **39** div $\mathbf{F} = \operatorname{div} (\mathbf{V} + \mathbf{W}) = \operatorname{div} \mathbf{V}$ so $y = \operatorname{div} \mathbf{V}$ so $\mathbf{V} = \frac{y^2}{2}\mathbf{j}$ (has zero curl). Then $\mathbf{W} = \mathbf{F} - \mathbf{V} = xy\mathbf{i} - \frac{y^2}{2}\mathbf{j}$ 41 curl (curl \mathbf{F}) = curl (-2yk) = -2i; grad (div \mathbf{F}) = grad 2x = 2i; $\mathbf{F}_{xx} + \mathbf{F}_{yy} + \mathbf{F}_{zz} = 4i$ 43 curl $\mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} = \mathbf{a} \sin t$ so $\mathbf{E} = \frac{1}{2} (\mathbf{a} \times \mathbf{R}) \sin t$ **45** n = j so $\int M dx + P dz = \int \int \left(\frac{\partial M}{\partial z} - \frac{\partial P}{\partial x}\right) dx dz$ **47** $M_y^* = M_y + M_z f_y + P_y f_x + P_z f_y f_x + P f_{xy}$ **49** $\int \mathbf{F} \cdot d\mathbf{R} = \iint \operatorname{curl} \mathbf{F} \cdot \mathbf{n} \, dS; \iint \mathbf{F} \cdot \mathbf{n} dS = \iint \operatorname{div} \mathbf{F} \, dV$

2 curl $\mathbf{F} = \mathbf{0}$ because curl of gradient is always zero. 4 curl $\mathbf{F} = -\mathbf{i} + \mathbf{j} - \mathbf{k}$ from equation (1).

6 curl $\mathbf{F} = 2\mathbf{i} + 2\mathbf{j}$ from Example 2: curl $(\mathbf{a} \times \mathbf{R}) = 2\mathbf{a}$.

8 $f(x, y, z) = r^{n+1}/2(n+1)$ has grad $f = \rho^n \mathbf{R}$ (so its curl is zero).

10 curl $(a_1x + a_2y + a_3z)\mathbf{k} = a_2\mathbf{i} - a_1\mathbf{j}$ which is zero when $a_1 = 0$ and $a_2 = 0$.

- 12 curl $(\mathbf{i} \times \mathbf{R}) = 2\mathbf{i}$ directly (or by Example 2 with $\mathbf{a} = \mathbf{i}$). Then $\oint \mathbf{F} \cdot d\mathbf{R} = \iint \text{curl } \mathbf{F} \cdot \mathbf{n} dS = 0$ since $\mathbf{n} = \mathbf{j}$ is perpendicular to \mathbf{i} .
- 14 $\mathbf{F} = (x^2 + y^2)\mathbf{k}$ so curl $\mathbf{F} = 2(y\mathbf{i} x\mathbf{j})$. (Surprise that this $\mathbf{F} = \mathbf{a} \times \mathbf{R}$ has curl $\mathbf{F} = 2\mathbf{a}$ even with nonconstant **a**.) Then $\oint \mathbf{F} \cdot d\mathbf{R} = \iint \text{curl } \mathbf{F} \cdot \mathbf{n} dS = 0$ since $\mathbf{n} = \mathbf{k}$ is perpendicular to curl \mathbf{F} .
- 16 C is the equator (the common boundary of S and T); V is the whole ball (the earth). Note that n doesn't point out in the bottom half T, or the direction around C would be opposite.

For $\mathbf{F} = \mathbf{R}$ (position vector), $\iint_{S} \mathbf{F} \cdot \mathbf{n} dS = -\iint_{T} \mathbf{F} \cdot \mathbf{n} dS$.

- 18 If curl $\mathbf{F} = \mathbf{0}$ then \mathbf{F} is the gradient of a potential: $\mathbf{F} = \operatorname{grad} f$. Then div $\mathbf{F} = 0$ is div grad f = 0which is Laplace's equation.
- 22 The potential is $f = xyz + \frac{1}{3}z^3$. 20 The potential is $f = x^2 y$.
- 24 Start with one field that has the required curl. (Can take $\mathbf{F} = \frac{1}{2}\mathbf{i} \times \mathbf{R} = -\frac{z}{2}\mathbf{j} + \frac{y}{2}\mathbf{k}$). Then add any **F** with curl zero (particular solution plus homogeneous solution as always). The fields with curl $\mathbf{F} = \mathbf{0}$ are gradient fields $\mathbf{F} = \text{grad } f$, since curl grad = 0. Answer: $\mathbf{F} = \frac{1}{2}\mathbf{i} \times \mathbf{R} + \text{any grad } f$.
- 26 $\mathbf{F} = y\mathbf{i} x\mathbf{k}$ has curl $\mathbf{F} = \mathbf{j} \mathbf{k}$. (a) Angular velocity $= \frac{1}{2}$ curl $\mathbf{F} \cdot \mathbf{n} = \frac{1}{2}$ if $\mathbf{n} = \mathbf{j}$. (b) Angular velocity $=\frac{1}{2}|\operatorname{curl} \mathbf{F}| = \frac{\sqrt{2}}{2}$ (c) Angular velocity = 0.
- 28 One possibility: $\mathbf{F} = \frac{x^2 + y^2}{2}\mathbf{k}$ has curl $\mathbf{F} = \text{spin field S}$. Other possibilities: $\mathbf{F} = \frac{x^2 + y^2}{2}\mathbf{k} + \text{any grad } f$.
- **30 False** (curl \mathbf{F} = curl \mathbf{G} means curl (\mathbf{F} \mathbf{G}) = 0 but not \mathbf{F} \mathbf{G} = 0). True (curl (\mathbf{F} \mathbf{G}) = 0 makes \mathbf{F} \mathbf{G} a gradient field). False ($\mathbf{F} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ and $\mathbf{G} = 0$ have the same curl (sero) but div $\mathbf{F} = 3$).
- **32** Curl $\mathbf{R}/\rho^2 = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \partial/\partial x & \partial/\partial y & \partial/\partial z \\ x/\rho^2 & y/\rho^2 & z/\rho^2 \end{vmatrix}$ has i component $z \frac{\partial}{\partial y} \rho^{-2} y \frac{\partial}{\partial z} \rho^{-2} = 0$. Similarly for \mathbf{j} and \mathbf{k} : thus curl $\mathbf{F} = \mathbf{0}$ and $\int \int \text{curl } \mathbf{F} \cdot \mathbf{n} dS = 0$ and (separately) $\oint \mathbf{F} \cdot d\mathbf{R} = \oint M dx + N dy = \oint x dx + y dy = 0$.
- **34** Based on Problem 47 of Section 11.3, the triple vector product $(\mathbf{a} \times \mathbf{R}) \times \mathbf{R}$ is $\mathbf{F} = (\mathbf{a} \cdot \mathbf{R})\mathbf{R} (\mathbf{R} \cdot \mathbf{R})\mathbf{a} =$ $(ax + by + cz)\mathbf{R} - (x^2 + y^2 + z^2)\mathbf{a}$. Then by Problem 42 b of this section, or directly, the curl is grad $(ax + by + cz) \times \mathbf{R} - \operatorname{grad}(x^2 + y^2 + z^2) \times \mathbf{a} = \mathbf{a} \times \mathbf{R} - 2\mathbf{R} \times \mathbf{a} = \mathbf{3a} \times \mathbf{R}$. Now $\int \int \operatorname{curl} \mathbf{F} \cdot \mathbf{n} dS = 0$ since $\mathbf{n} = \frac{\mathbf{R}}{|\mathbf{R}|}$ is perpendicular to the cross product curl $\mathbf{F} = 3\mathbf{a} \times \mathbf{R}$.
- Also, $\oint \mathbf{F} \cdot d\mathbf{R} = \int (\mathbf{a} \cdot \mathbf{R}) \mathbf{R} \cdot d\mathbf{R} (\mathbf{R} \cdot \mathbf{R}) \mathbf{a} \cdot d\mathbf{R} = 0$ because $\mathbf{R} \cdot d\mathbf{R} = 0$ on the circle and $\mathbf{R} \cdot \mathbf{R} = 1$. **36** curl $\mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \partial/\partial x & \partial/\partial y & \partial/\partial z \\ z & x & xyz \end{vmatrix} = \mathbf{i}(xz) + \mathbf{j}(1 yz) + \mathbf{k}(1)$ and $\mathbf{n} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$. So curl $\mathbf{F} \cdot \mathbf{n} = z$
- $x^2z + y y^2z + z$. By symmetry $\iint x^2z \, dS = \iint y^2z dS$ on the half sphere and $\iint y dS = 0$. This leaves $\iint z \, dS = \int_0^{2\pi} \int_0^{\pi/2} \cos \phi (\sin \phi \, d\phi \, d\theta) = \frac{1}{2} (2\pi) = \pi.$
- **38** (The expected method is trial and error) $\mathbf{F} = 5yz\mathbf{i} + 2xy\mathbf{k} + any \text{ grad } f$.
- 40 Work = $\int \mathbf{B} \cdot d\mathbf{R} = \int \int (\operatorname{curl} \mathbf{B}) \cdot \mathbf{n} dx dy = \int \int \mu \mathbf{J} \cdot \mathbf{n} dx dy$. So work is μ times current through C. 42 (a) curl $v\mathbf{i} = \frac{\partial v}{\partial z}\mathbf{j} - \frac{\partial v}{\partial y}\mathbf{k}$. Then curl (curl \mathbf{F}) = $\left(-\frac{\partial^2 v}{\partial y^2} - \frac{\partial^2 v}{\partial z^2}\right)\mathbf{i} + \frac{\partial^2 v}{\partial x \partial y}\mathbf{j} + \frac{\partial^2 v}{\partial x \partial z}\mathbf{k}$. Also
 - grad (div \mathbf{F}) = $\frac{\partial^2 v}{\partial x^2} \mathbf{i} + \frac{\partial^2 v}{\partial x \partial y} \mathbf{j} + \frac{\partial^2 v}{\partial x \partial z} \mathbf{k}$. The difference is $(v_{xx} + v_{yy} + v_{zz})\mathbf{i}$. Note: The same steps for the j and k components give identity (a) for any F. My favorite is to square this matrix:
 - $\begin{bmatrix} \operatorname{curl} & \operatorname{grad} \\ -\operatorname{div} & 0 \end{bmatrix} \begin{bmatrix} \operatorname{curl} & \operatorname{grad} \\ -\operatorname{div} & 0 \end{bmatrix} = \begin{bmatrix} \operatorname{curl} \operatorname{curl} \operatorname{grad} \operatorname{div} & 0 \\ 0 & -\operatorname{divgrad} \end{bmatrix} = \nabla^2 I!!$
 - (b) curl $(fvi) = (f_zv + fv_z)j (fv_y + f_yv)k$. This is f curl $\mathbf{F} = f(v_zj v_yk)$ added to $(\text{grad } f) \times \mathbf{F} =$ $f_z v \mathbf{j} - f_v v \mathbf{k}$. Again the identity extends to any **F**.
- 44 $\mathbf{F} \times \mathbf{G} = (Np Pn)\mathbf{i} + (Pm Mp)\mathbf{j} + (Mn Nm)\mathbf{k}$. Its divergence is the sum of x, y, and z derivatives: $[N_x p + N p_x - P_x n - P n_x] + [P_y m + P m_y - M_y p - M p_z] + [M_z n + M n_z - N_z m - N m_z]$. Note that m multiplies $P_y - N_z$, the first component of curl **F**. This starts **G** · curl **F** - **F** · curl **G**, as we want.
- 46 False. Certainly $\mathbf{G} \times \mathbf{F}$ would be perpendicular to \mathbf{F} but $\nabla \times \mathbf{F}$ is something different. For example $\mathbf{F} = \mathbf{i} + \mathbf{y}\mathbf{k}$ has $\nabla \times \mathbf{F} = \mathbf{i}$ so $(\nabla \times \mathbf{F}) \cdot \mathbf{F} = 1$.

- 48 S = roof, its shadow = ground floor, C = edge of roof, shadow of C = boundary of ground floor. Similarly for spherical cap $x^2 + y^2 + z^2 = 1$ above $z = \frac{1}{2}$. Note C is on the plane $z = \frac{1}{2}$ and its shadow is a circle around the shadow of the cap, down on the plane z = 0.
- 50 curl $\mathbf{V} = \text{curl}(-x\mathbf{k}) = \mathbf{j}$. A wheel in the xz plane has $\mathbf{n} = \mathbf{j}$ so it spins at full speed. A wheel perpendicular to \mathbf{j} will not spin, if it is in the xy plane with $\mathbf{n} = \mathbf{k}$.