13.1 Surfaces and Level Curves (page 475)

CHAPTER 13 PARTIAL DERIVATIVES

13.1 Surfaces and Level Curves (page 475)

The graph of z = f(z,y) is a surface in three-dimensional space. The level curve f(z,y) = 7 lies down in
the base plane. Above this level curve are all points at height 7 in the surface. The plane z = 7 cuts through
the surface at those points. The level curves f(z,y) = ¢ are drawn in the zy plane and labeled by ¢. The family
of labeled curves is a contour map.

For z = f(z,y) = 22 — y?, the equation for a level curve is x2 — y2 = ¢. This curve is a hyperbola. For

2 = z — y the curves are straight lines. Level curves never cross because f(x,y) cannot equal two numbers
¢ and c¢’. They crowd together when the surface is steep. The curves tighten to a point when f reaches a
maximum or minimum. The steepest direction on a mountain is perpendicular to the level curve.

8 z derivatives oo, —1,—2, —4e~* (flattest) 5 Straight lines 7 Logarithm curves

9 Parabolas 11 No: f = (z+ y)" or (az + by)™ or any function of az+by 18 f(z,y) =1— 2% —y?
15 Saddle 17 Ellipses 422 + y2 =¢? 19 Ellipses 522 + y2 = ¢2 + dez + 22
21 Straight lines not reaching (1,2) 28 Center (1,1); f =z°+y2—1 25 Four, three, planes, spheres
27 Less than 1, equal to 1, greater than 1 29 Parallel lines, hyperbolas, parabolas
31 d{- :482—322 =0,z =16 hours 88 Plane; planes; 4 left and 3 right (3 pairs)

2 Level curves are circles for any function of z2 + y?; the maximum is at (0, 0); the functions equal 1 when
z? + y? = 3,1,2, 00 (radius is square root: increasing order fy, fg,fy,f4).
4 ;,4;\/3_——-17= -3\/'{-—8—,= 7!; at z = 1;% =ﬁ = ?%,% =—z=—l;% = —2z¢"% "1 = —2¢~2,
6 (z + y)? = O gives the line y = —x; (z + y)? = 1 gives the pair of lines z+ y = 1 and z + y = —1; similarly
X +y = v2 and x+y = —v/2; no level curve (z + y)? = —4.
8 sin(z—y) = O on an infinite set of parallel lines z—y = 0,+x, +2x, - -; for c = 1 the level curves sin(z—y) = 1
are parallel lines z — y = 7 + 2#n; no level curves for c =2 and ¢ = —4.
10 The curve J =0 is the axis y = 0 excluding (0,0); 2% = 1 or 2 or —4 is a parabola.
12 f(z,y) = zy — 1 has level curve f = 0 as two pieces of a hyperbola.
14 f(z,y) = sin(z + y) is zero on infinitely many lines z + y = 0, +x, +2x,---
16 f(z,y) = { maximum of z? + y2 — 1 and sero } is sero inside the unit circle.
18 \/422 + 42 = ¢ + 2z gives 422 + y® = c® + 4cz + 422 or y2 = ¢2 + 4cx. This is a parabola opening to the
left or right.
20 /322 + y2 = ¢ + 2z gives 322 + y? = ¢ + 4cz + 422 or y® — 22 = ¢? + 4cz. This is a hyperbola.
26 Since z? + y? is always > 0, the surface 22 + y2 = 22 — 1 has no points with 22 less than 1.
30 Direct approach: zy = (2:422)(th) = {(z,y; + oy + Zaye + z2y1) = 21+ 1+ Hyn
=1+ (z1-22)* 2 1. Quicker approach: y = i is concave up (or convex) because y" = 527 is positive.

43133
Note for convez functions: Tangent lines below curve, secant line segments above curve!
$2y= %‘5 has % = —52+’° = —1at = 16. Also ¢’ = 1—2;3;“ 2 0 s0 the curve is concave up (or convex).

The line z + y = 24 also goes through (16,8) with slope —1; it must be the tangent line.
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13.2 Partial Derivatives (page 479)

34 The function f(z,y) is the height above the ground. The level curve f = 0 is the outline of the shoe.

13.2 Partial Derivatives (page 479)

The partial derivative 3f /8y comes from fixing x and movingy. It is the limit of f(x,y + Ay)— f(x,y))/Ay.
If f = e siny then 3f/9z = 22X sin y and 3f /3y = e2X cos y. If f = (z2+y?)/? then f, =x/(x2 +y2)1/2
and fy, =y/ (x2 + yz)l/ 2 At (z0, yo) the partial derivative f, is the ordinary derivative of the partial function
f(z,y0). Similarly f, comes from f(xg,y). Those functions are cut out by vertical planes z = zo and y =yj,
while the level curves are cut out by horizontal planes.

The four second derivatives are f,.,fxy,fyx,fyy. For f = zy they are 0,1,1,0. For f = cos 2zcos 3y
they are —4 cos 2x cos 3y, 6 sin 2x sin 8y, —9 cos 2x cos 3y. In those examples the derivatives fxy and fyx
are the same. That is always true when the second derivatives are continuous. At the origin, cos 2z cos 3y is
curving down in the z and y directions, while zy goes up in the 45° direction and down in the —45° direction.

1 3+ 2zy?%; -1 + 2yz? 8 3z2y% — 2z;22%y — e¥ 5 ,_2,,) '(z_if,ff 7 (T,‘_'_—";I"’,T;,G,szlgv

9 T gy 11 il 138 2,3,4 15 6(z + 1y),6:(z + ty), —6(z + iy)

17 (f =3 foz = L}'—”— foy = 2 fyy = —”—5—2- 19 —a? cos az cos by, absin az sin by, —b? cos az cos by
21 Omit line z = y; all posmve numbers, fe==2(z—-y) 3% fy=2(z-y)3

28 Omit z = t; all numbers; = :’ = t, —ﬁ);, Ll;

252z>0,t>0andz=0,t>1land z=—1,-2,---,t =¢,€?,---; f, = (Int)z!"*"1, f, = (In )¢ ="

27 y,z;f = G(z) + H(y) 29 3L =2eu) (xy) = yv(zy)
81 frez = 6Y°, fyyy = 62°, faay = faya = f,,zz = 1829, fyye = fyay = fayy = 182%
38 g(y) = Ae¥/T 35 g(y) = Ae¥/? + Be~ev/?
87 fo=—2f,foz = fuy = t sin z sin y; e~ 3¢ sin 2z sin 3y

39 sin(z + t) moves left 41 sin(z — ct),cos(z + ct),e*
48 (B — A)hy(C*) = (B — A)[fy(5,C*) = fy(a,C*)] = (B — A)(b — a) fyz(c*, C*); continuous f,, and fy.
45 y converges to b; inside and stay inside; d, = \/(zp — )2 + (yn — b)2 — zero; d, < eforn> N
47 ¢, less than 6 49 f(a,b); 51 f(0,0) = 1; f(0,0) = 1; not defined for z < 0

1
jgoy or =—D(v-2)

2 gﬁ =3 cos(3z — y), g =—cos(3z—y)+1 4 QL = ez+4 + ze®t4 %5 _

- _ ) ,
6 5 = —z(z2+y2) o, 73'6 = —y(z® +y?) 7%/ 8 5£ = o35 5}9 = z+22y 10 &L = y*(Iny), ¥ oy = 2y"!
125‘5 ‘1"55 y 14 foz = 2, fay = fyz = 6, fyy = 18

16 f.. =a e""”’!’ foy = fyz = abe“‘“’!f foy = p2eaz+by
18 fra=nn—1)(z+y)" 2= foy = fyz = fyy

2

20 foz = (z+w)”f=y fyz = (_aTiTy)T’fyy (z+zy)"' (z-:;)’ Note fzz + fyy = 0.
22 Domain: all (z,y,t) such that 2 + y2 > t? (interior of cone z2 + y? = t?); range: all values f > 0;
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13.3 Tangent Planes and Linear Approximations (page 488)

w=hu=hu="}

24 Domain: halfplane where z + ¢t > 0; range: all real numbers; f, = ;_-lﬁ = fi.

26 Domain: all (z,y) with |y| < 1; range: all numbers with absolute va.lue |f(z9)| <=
(since —1 < cos z<1and 0 <cos™'y < x); &L = —sin zcos™ !y, ay =- °‘;'_:z

28 oL = —y(z) and g’;— = v(y).

30 f(z,y)=f/ ¥ =lny—-Inz=Ihif,=-land f, = % (confirming Problem 28).

82 g(y) = e~Y or any multiple Ae™¥. 84 g(y) = ¢°’¥ or any multiple Aec’V.

36 f, = (-—2:)3—:’/u Then f,; = f; = sshe= 3/4t + & z ez /4t

88 ™ “" tsin mz cosny solves f; = f.- + fw Also f = —e"(’ +1°)/4 has f, = foo + o =
(_i"+ —EJL) (=2 +v%) /4t

40 f = sin(z — t) peaks when z — ¢ = 7 and f = 1. If ¢ increases by At = § then z increases by Az = §.
The wave velocity is £2 = 1. The other function sin(z + ¢) has 42 = —1 (velocity 1 to the left).

2—L —Lglves—} %,!&andalsoﬁ 8—3{- Usefﬂ—futoﬁnd—-} Fz"‘"

4(a) L=yand 3£ = z when zy > 0 (two quadrants); 2£ = —y and 55 = —z when zy < 0 (other two
quadrants); %& doesn’t exist but %5 = 0 up the y axis; %‘5 =0 but %5 doesn’t exist on the z axis.
(b) 2L =2z and %5 = 2y except f is not continuous when z =0 and y # 0. OK at (0,0).

46 (a) (z2,¥2) = (3, 2); (%4, 94) = (}, §); approaching (0,1) (b) (z2,y2) = (24, v4) = (1,0) approaching (1,0)
(c) (z2,¥2) = (z4, v4) = (1,0) but no limit (d) (z2, y2) = (2,0), (z4,y4) = (4,0) has no limit.

48 (a) The limit is Va2 + 62 (contmuous function) (b) The limit is § provided b # 0 (c) The limit is ;35
provided a + b # 0 (d) The limit is %> except no limit at (0,0).

50 Along y = mz the function is ;1-_-'_—;;;; —+ 0 (the ratio is near —,—;— for small z). But on the parabola y = z?

the function is 2—; 1‘; So this function f(z,y) has no limit: not continuous at (0,0).

52 (a) ;,-4”?- y(;,—_,{';,—) — 0 because always | %Ly | < 1 (v) ;‘—_f?- equals 0 on the axes but 1 on 45° lines;

no limit; (c) Sk = (=™/2y*/?)( '":_'_ e
as in (a). For negative z and y, m and n should be positive integers. Further problem by same method:

a,b
= 03 m n
P Oifa> 2 and b> 5.

) =+ 0 if m > 0,n > 0, because the second factor is < 1

13.3 Tangent Planes and Linear Approximations (page 488)

The tangent line to y = f(z) is y — yo = £'(xp)(x —xg). The tangent plane to w = f(z,y) is w —wp =
(8f/9x)g(x — xg) +(8f/3y)o(y — ¥o)- The normal vector is N = (fx,fy, —1). For w = z° + y® the tangent
equation at (1,1,2) is w — 2 = 8(x — 1) + 8(y — 1). The normal vector is N = (8,8, —1). For a sphere, the
direction of N is out from the origin.

The surface given implicitly by F(z,y,z) = c has tangent plane with equation (8F/dz)o(z — zo)+
(3% /oy)(y —yg) + (0F/32)g(s —2g) =0. For zyz = 6 at (1,2,3) the tangent plane has the equation
6(x — 1) + 8(y — 2) + 2(s — 8) = 0. On that plane the differentials satisfy 8dz + 3dy + 2dz = 0. The differ-
ential of z = f(z,y) is dz = fxxdx + fydy. This holds exactly on the tangent plane, while Az ~ fxAx + fy Ay
holds approximately on the surface. The height z = 3z + 7y is more sensitive to a change in y than in z,
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13.3 Tangent Planes and Linear Approximations (page 488)

because the partial derivative 32/3y = 7 is larger than 93/9x = 8.

The linear approximation to f(z,y) is f(zo, yo) +(8f/3x)g(x — xg) + (3f/8y)o(y — ¥g)- This is the same as
Af s (6f/9x)Az + (8f /0y)Ay. The error is of order (Ax)2 + (Ay)2. For f = sin zy the linear approximation
around (0,0) is fr = 0. We are moving along the tangent plane instead of the surface. When the equation is
given as F(z,y,2) = c, the linear approximation is FxAz + FyAy+ FzgAz=0

Newton’s method solves g(z,y) = 0 and h(z,y) = 0 by a linear approximation. Starting from z,,y, the
equations are replaced by gx Ax + gy Ay = —g(Xn, yn) and hx Ax + hyAy = —h(xn, yn). The steps Az and
Ay go to the next point (Xp, 1,¥n41)- Fach solution has a basin of attraction. Those basins are likely to be
fractals.

1z-1=y-L;N=j-k 8z-2=13(z—6)—2(y-3);N=123i—-2%j-k
52(z—1)+4(y—2)+2(z2-1)=0N=2i+4j+2k Tz-1=z-1;N=i-k
9 Tangent plane 2zo(z — 20) — 2zo(z — 20) —2y0(y yo) = 0;(0,0,0) satisfies this equation because

22 — 22 — y2 = 0 on the surface; cosf = —N—k— m \/;— (surface is the 45° cone)
[}

11 dz = 3dz — 2dy for both; dz = 0 for both; Az = 0 for 3z — 2y, Az = .00029 for z3/y?; tangent plane
18 z = 2z + F,t; plane 6(z — 4) + 12(y — 2) + 8(z — 3) = 0; normal line z = 4 + 6t,y = 2+ 12¢,z = 3 + 8¢
15 Tangent plane 4(z — 2) + 2(y — 1) + 4(z — 2) = 0; normal line z = 2 + 4t,y = 1 + 2¢,z = 2 + 4¢;(0,0,0)
1

a.tt=—5

17 dw = yodz + zody; product rule; Aw — dw = (z — z0)(y — o)
19 dI = 4000dR + .08dP;dP = $100; I = (.78)(4100) = $319.80

— 26 _ 25 _ 3 — 25 _ 25 _ _ld__ —yAz+zd
21 Increase = {7 — 700 = 101 decrease = o4 — 1% 404,dA z —ydy, 23 Af =~ —{WE
25 Q increases; Q,—“—,Qg=:—5 P, =—. Q =%,P,=—.2Qt=§; =50 — 250( —.4)—§(t—10)
= = = 40: s s * . = — =1 = ==
27 s =1,t = 10 gives Q P, = —Qi=sQi+1=Q 41 ; Qs 20,Q; 3P =20,P = 3
202-2=2z-2+2(y-1)and2-3=4(z-2)-2(y—1);2=1y=1,2=0
S1Az=-},Ay=3;z1 =1,y =—3;linez+y=0

83 3d°Az— Ay=—a—a® gives Ay=—-Az= i%%; lemon starts at (1/4/3,—1/v/3)
~Az+ 3a%Ay = a+a®

385 If z° = y then y® = z° Then z° = z only if z=0 or 1 or —~1 (or complex number)

87 Az = —z0+ 1,Ay = —yo + 2, (z1,y1) = (1,2) = solution

z3 T 0
39 G = H—T‘—T 41 J = i ey],A:z:=—1+e""‘,Ay=—1—(:1:,.,—l—i-e"")e'y’l

43 (z1,y1) = (0, )( 4’4)( 0)

2N=i+j+ki(z-3)+(y—4)+(2—-100=0 4N=i+2j-k;jz+2y=2-1
6N=2i+4j+4k;2(z—-1)+4(y—2)+4(2—1)=0
8 N = 8xi + 4nj — k; 8x(r—2)+4nx(h—-2)=V —8r

k

i
10v=|1 4 -1 |=—i-j— 5k (both planes go through (0,0,0) and so does the line!)
2 3 -1
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13.3 Tangent Planes and Linear Approximations (page 488)

ij k
12N; =2i+4j—-kand Ny =2i+6j—kgivev=| 2 4 -1 |=2i+ 4k tangent to both surfaces
2 6 -1

14 The direction of N is 2zy?i + 22%yj —k = 8i + 4j — k. So the line through (1,2,4) has z = 1 + 8t,y = 2 + 4t,
z=4-t.

16 The normal line through (zo, yo, 20) has direction N = (F;i+ Fyj + F;k)o. This is the radial line from the
origin if (F:)o = co, (Fy)o = ¢yo, (Fi)o = czo. Then F is a function of z? + y? + 22 and the surface
is a sphere. _

18 df = yz dz + zz dy + zy dz.

. R} _ .
20 Direct method: R=j§—?_‘%§; and :}ﬁ m and gn, TR—J}TJ’ Ile-la.nng 2 then W“
four times larger (# vs. 1; more sensitive to Ry). By chain rule: — g5 5% = 'ﬁ’{ and — _12_ 22 = sz .
22 (a) Common sense: 2 hits in 5 at bats (£ = .4) raises an average that is below .4. Mathematics:
A=%hasdA= ”ﬁ'-i’—d”->0ifydz>zdy This is again g"‘—y>§or 4> A. (b) The player has

z= 200 hits since fgg = .5. We want to choose Az = Ay (all hits) so A A reaches .005.

But AA s ”A‘—'}’—A—l o747 = .005 when Az = 4 hits. Check: 204 = 505 (to 3 decimals).

If averages are rounded down we need Az =5 hits.
24 (1) c is between xg and xq + Ax by the Mean Value Theorem (2) C is between yq and yg + Ay
(3) the limit exists if fx is continuous (4) the limit exists if fy is continuous.

i AP _ 8-.2t 3P _ AP _ _6_ _ 50
26 P =452 and Q = {57 s0 57 = Tot2)7 and 5 = %% T [eT " 3
8P —1
and = .-6 =3
28 Take partxa.l derivatives with respect to b: 21: i bg’; +z=0 or m Similarly 2.1: =z + bf’,’c’ +1=
gives ‘;’ = ‘3_' . Then g—: is larger (in magmtude) when z = 2.

30 (a) The third surface is =0. (b) Newton uses the tangent plane to the graph of g, the tangent plane to
the graph of h, and 2 = 0.

32 ‘:—’Az —-Ay= ‘;3 and —Az + %Ay = % give Az = Ay = ——%. The new point is (—1, —1), an exact solution.
The point (-;—, %) is in the gray band (upper right in Figure 13.11a) or the blue band on the front
cover of the book.

34 3a2Az — Ay = —a® and —~Az + 0Ay = a give Az = —a and Ay = —2a>. The new point is (0, —2¢%) on
the y axis. Then 0Az — Ay = —24° and —Az + 3(4a%)Ay = 8a® give Ay = 2a® and Az = 164°.

The new point (16a°,0) is the same as the start (a,0) if 16a® =1ora =+ 12 . In these cases
Newton’s method cycles. Question: Is this where the white basin ends along the z axis?

36 By Problem 34 Newton’s method diverges if 16a® > 1 : for instance (zo, %) = (1,0) as in Example 9
in the text.

38 A famous fractal shows the three basins of attraction — see almost any book displaying fractals. Remarkable
property of the boundary points between basins: they touch all three basins! Try to draw 3 regions
with this property.

40 Problem 39 has 2zAz — Ay y —z? and Az — Ay = y — . Subtraction gives (2z — 1)Az = z — z%. Then
z+Az=z+ ;;'_’ = 32—. By the second equation this is also y + Ay. Now find the basin:

If z<0then Az>0 but z+ Az still < 0: moving toward 0. f 0 <z < % then z+ Az < 0. So the basin
for (0,0) has all x < 'T The line z = 5 gives blowup. If 1 3 <z < 1then Az >0.fz>1then Az <0
but z+ Az = 37— (1,1) has all x > %
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13.4 Directional Derivatives and Gradients (page 495)

42J = i i ] i singular; g and h have the same tangent planes. Newton’s equations 2Az + 2Ay = —2 and
Az + Ay = —1 have infinitely many solutions.

13.4 Directional Derivatives and Gradients (page 495)

Duf gives the rate of change of f(x,y) in the direction u. It can be computed from the two deriva-
tives f /3x and 8f /3y in the special directions (1,0) and (0,1). In terms of u;, ua the formula is Duf =
fxuy + fyug. This is a dot product of u with the vector (fx,fy), which is called the gradient. For the linear
function f = az + by, the gradient is grad f = (a,b) and the directional derivative is Dy f = (a,b) -u

The gradient Vf = (f., fy) is not a vector in three dimensions, it is a vector in the base plane. It
is perpendicular to the level lines. It points in the direction of steepest climb. Its magnitude |gradf| is
the steepness \/ f,% +fy2. For f = 22 + y? the gradient points out from the origin and the slope in that
steepest direction is |(2x, 2y)| = 2r.

The gradient of f(z, y, 2) is (fx, fy,fs). This is different from the gradient on the surface F(z, y, 2z} = 0, which
is —(F; /F,)i—(F,/F;)j. Traveling with velocity v on a curved path, the rate of change of f is df /dt = (grad f) - v.
When the tangent direction is T, the slope of f is df/ds = (grad f) - T. In a straight direction u, df/ds is the
same as the directional derivative Dy f.

1 grad f=23i—2yj,Duf=\/§$—y,Duf(P)=\/§
S grad f =e®cosyi—e®sinyj, Duf = —€e*siny, Duf(P)= -1
5f=yF -3 grad f=§i+ 525, Duf = 5, Duf(P)=Jy  Tgrad f= ;R i+ 2y ]
9 grad f = 6zi + 4yj = 61 + 8j = steepest direction at P; level direction —8i + 6j is perpendicular; 10, 0
11 T; F (grad f is a vector); ;T 18u= (W’%T"' J#)’Duf = Va2 + 2
15 grad f = ("7 ¥,—e*¥) = (e}, —¢7) at P;u= (%, -3—;),Duf = v2¢"1
17 grad f = O at maximum; level curve is one point 19 N =(-1,1,— l) U=(-1,1,2),L=(1,1,0)
21 Direction ~U = (-2,0,-4) 23 -U = (=£—, e -, o)
25 f = (z + 2y) and (z + 2y)?;i + 2j; straight lines z + 2y = constant (perpendicular to i+ 2j)
27 grad f = +(Jz, 2); grad g = £(2v5,V5), f = =(FH - 2) + C,9 = i(2fz+fy) +C
29 # = constant along ray in direction u = 31: ;grad 8 = %ﬁ'ffl ﬁj,u grad § =
31U = (fs, fy, f2 + f2) = (—1,-2,5); =U = (—1, -2, 5); tangent at the point (2,1,6)
38 grad f toward 2i +j at P,j at Q,—2i +j at R;(2, ) and (23, 2); largest upper left, smallest lower right;
Zmax > 9; 2 goes from 2 to 8 and back to 6
35 f = V(e — 12+ (y— 0% (3L, 8E)oo = (55 )
87 Figure C now shows level curves; |grad f| is varying; f could be zy

89 z2 + zy;e*Y; no function has %ﬁ- =y and QL = —z because then fzy # fyz
d1v=(1,2t); T=v/V1+ 4% L =v (2, 2t2) =2t + 4t% L = (2t + 4%) /V1 + 442
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13.4 Directional Derivatives and Gradients (page 495)

43v=(2,3);T=-\-}-;-3-;%=v-(210+4t,—2y0—6t)=4zo—6yo—10t;%= ot

45 v = (¢*,2¢%,—¢7t); T = ﬁ,ﬁ[; grad f = (1,1, )= (et e 2, ¢t), L =1+2-1, &= 1%[

47 v = (—2sin 2¢,2 cos 2t), T = (- sin 2¢,cos 2¢t); grad f = (y,2), £ = —2sin’ 2t + 2cos? 2t, & = 14,
sero slope because f = 1 on this path
492-1=2(z—4)+3(y—5);f=1+2(z—4)+3(y—5) blgrad f-T=0;T
2 grad f = foi+ f,d = 3+ 4j; Duf = 3(2) + 4(2) = 5 at every point P.
4grad f = 104° : Duf = -10° Duf(P) = 10. 6 grad f = oiulsk
~Di+yi+sk +1)i+yj+sk
8 grad f =~ E A — GHPATT
10 Eﬂ—l(3u1+\/1—uf)=3—7;‘é=:;=0ifu1 = 3y/1—u?. Then u? =9(1 - u?) or 10u? =9 oru; = 7‘}3,
—-%1
which makes the slope equal to % +yis = V1o.
12 In one dimension the gradient of f(z) is %i. The two possible directions are u = i and u = —i. The two
directional derivatives are + 95 and —$£. The normal vector N is &i - j.
14 Here f = 2z above the line y = 2z and f = y below that line. The two pieces agree on the line. Then
grad f = 2i above and grad f = j below. Surprisingly f increases fastest along the line, which is the
direction u = ,/L"a.(i + 2j) and gives Dy f = %.
18 grad f = ;—fi:’_‘_lv—’ = i;zj and P is a rough point! The rate of increase is infinite (provided z2 + y? stays
below 5; t{e direction must point snto this circle).
18 (a) N-U=N-L=U-L=0 (b) N is perpendicular to the tangent plane, U and L are parallel
to the tangent plane. (c) The gradient is the zy projection of N and also of U. The projection of L
points along the level curve.
—_ x . — z = - .
20N = (m, 7:5&:;;, 1),U (m, 7;1'17’-, 1),and L (7:’”-:’7, 7;’-:.7, 0). U goes up the side
of the cone.
22 —U = (—4,3,—25). The zy direction of flow is — grad z = —4i + 3;j.
24 -U= (ﬁ, ‘/—5”_’7, —1). The zy direction of flow is radially inward.
26 f=L= % is a straight level curve y = z. The direction of the gradient is perpendicular to that level curve:
gradient along —i + j. Check: grad f = Z¥i+ -:;j =—i+j.
28 (a) False because f + C has the same gradient as f (b) True because the line direction (1,1, —1) is also the

normal direction N (c) False because the gradient is in 2 dimensions.

800 =tan"'¥ hasgrad f = (1—;&6‘%{, i_,_—zﬁ;)—;) = S%f)—. The unit vector in this direction is
T=(;73¥:—F,7;ﬁ). Then grad 0 - T = it = 1.

82T =c¢*" has AT LAz + %—T',—Ay = (-2zAz - 2yAy)e=="~V" = (—2Az + 4Ay)c~5. This is largest
going in toward (0,0), in the direction u = (_—\}_5:’ %).

34 The gradient is (2az + c)i + (2by + d)j. The figure shows ¢ =0 and d = § at the origin. Then b= } from
the gradient at (0,1). Then a & —1 from the gradient at (2,0). The function —3z2 + 1y + 1y has
hyperbolas opening upwards as level curves.

36 grad f is tangent to zy = ¢ and therefore perpendicular to yi + zj. So grad f is a multiple of zi — yj.
|grad f| is larger at Q than P. It is not constant on the hyperbolas. The function could be f = z2 — y2.
Its level curves are also hyperbolas, pefpendicular to those in the figure.

38 £(0,1) =B+C=0,(1,0)= A+ C =1, and f(2,1) = 24+ B+ C = 2. Solution A=1,B = C =0.

So grad f =1. '
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40 The function is zy + C =o its level curves are standard hyperbolas.
a2v= (%, dt) (—2sin 2¢,2 coe 2t); T = (—sm2t cos 2t); grad f = (1, 0) so ¥ = —2sin2tand &L = —sin2t.
44 v =(2t,0) and T = (1,0); grad f = (y,z) s0o L =2ty =6t and L =y =3.
46 v = (1,2t,3t2) and T = v/V/1+ 42 + 9t%; grad f = (4z,6y,22) = (4¢,6¢%,2t°) so L = 4¢ + 12> + 6¢°
& _ att12e*tet®
aud G = Viramson® .
48 D? = (z— 1) + (y — 2)° has 2D22 =2(z — 1) or 42 = 251, Similarly ZD%% = 2(y — 2) and '80% =2,
Then |grad D| = (25)? + (452)? = 1. The graph of D is a 45° cone with its vertex at (1,2).
50 The directional derivative at P is the limit as As — 0 of AL .L(zeﬂ.x.é&mﬂ&);.t&mml_ Then
Af s Az + %Ay = Dyuf(P) times As and Duf(P) = w1 2L(P) + ugs's(P)

13.5 The Chain Rule (page 503)

The chain rule applies to a function of a function. The z derivative of f(g(z, y)) is 8 f/3z = (0f/9g)(9g/3x).
The y derivative is 3f/3y = (3f/3g)(9g/dy). The example f = (z+y)" has g = x + y. Because dg/9z = dg/dy
we know that 3f /dx = of /3y. This partial differential equation is satisfied by any function of z + y.

Along a path, the derivative of f(z(t), y(t)) is df /dt = (8f/9x)(dx/dt) +(3f/3y)(dy/dt). The derivative of
Fz(t), y(t), 2(t)) is focx¢ + fyyy + fas¢. I f = zy then the chain rule gives df /dt = y dx/dt + x dy/dt. That
is the same as the product rule! When 2z = u;t and y = ujt the path is a straight line. The chain rule for
f(z,y) gives df/dt = fxuy + fyug. That is the directional derivative Du f.

The chain rule for f(z(t,u),y(t,u)) is 8f/0t = (3f/3x)(dx/at) + (3f/3y)(dy/dt). We don’t write df /dt
because f also depends on u. If z = rcosf and y = rsind, the variables ¢,u change to r and 4. In this case
af[dr = (0f /x) cos § + (9f/3y) sin 8 and 8f/30 = (3f/3x)(—r sin #) + (df/dy)(r cos ). That connects the
derivatives in rectangular and polar coordinates. The difference between dr/3z = z/r and 8r/dz = 1/cos
is because y is constant in the first and 6 is constant in the second.

With a relation like zyz = 1, the three variables are not independent. The derivatives (3f/dz), and
(3f/3z); and (3f/0z) mean that y is held constant, and s is constant, and both are constant. For
f = 2% + y? + 2? with zyz = 1, we compute (8f/9z), from the chain rule 8f/3x + (8f /3y)(8y/3x). In that
rule 82/8z = —1/x2y from the relation zyz = 1.

1 fz = fy = cos(z +y) 8 fy =cfs = ccos(z + cy) 5 392 9z dg 9255 7# 7 Moves left at speed 2
9 4 = 1 (wave moves at speed 1)
1 &5 f(z+5y) = f"(z+5y), L f(z +iy) =2 f"(z +iy)
80 fzz + fyy = 0;(z +1y)? = (22 — y?) + ¢(22y)
18 L =2z(1) +2y(2t) =2t +4¢° 15 L=yl =1 a7L=_Ld, L,

19V = lﬂ.r2h’¢;‘" = 21rrhdr+ Eid_h. = 36x

3 dt
21 42 dD 105

90 _60 —45
m(&)) + \/W(45) mph, & = \/m»(GO) + m(ﬁ) s 74 mph
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28%:“1%5-'-"2%5“}'“3%% 25%{=1withxa.ndyﬁxed;%=6
27 fi = fat + fu(2t); for = fat + fz + 20yt + 2fy = (faot + fu=(28))E + fz + 2(foyt + fuy(28))t + 2§,
29—L —L"”+J- —Lcosﬂ-l- —Lsmﬂ 0 is fixed

3z Br
S$1ry,=

v T = r:rﬁ%ﬁm,a,()— g3l =12l

33 (83)1’ m,(cmz)( Z), = 1; first answer is also Tfﬁ =1
35 fr = fzcosf+ fysind, fro = —f, 8in 0+ f, cos 0+ foz(—r sin 8 cos 8) + fzy (—r sin® 6 +r cos? 8) + f,y, (r cos 0 sin §)

R

87 Yes (with y constant): 22'= ye®v, 92 = ﬁ = ye‘sy 89 fo = faze + fyth; for = fax®d + 2fayTeve + fuy¥?
41 (3, =3 -5555=a—§b;(3£)y=a;( De=otot=13b

481 46 f=y%80 f =0,f, =2y=2rsinf; f=r2s0 f, =2r=2/22+ 42, f, =0
47 gy = fozu + fyyu =fz+ fyigu = fz2y + .fyyv = fz— fy;guu = fraZu + fsyyu + fyzzu + fyyyu
= fzz + 2fzy + fyy; Jvv = fzzZy + f:yyv - fyzzv - fyyyu = fez — zf::y + fyv- Add guu + gve 49 True

2 fr = 10a(az + by)® and f, = 10b(az + by)®; bf:; = af,. 4f. = z+7y and f, = z+7y, Tfz = fy-
6 % = -gf%f— + %‘5% is the product rule y% +x%¥. In terms of u and v this is 3 (uv) = v32 + 4L,
8 fit = c?n(n — 1)(z + ct)*~2 which equals c2f,,. Choose C = —c : f = (z — ct)" also has f;; = c2f,..
10 Since sin(0 — t) is decreasing (it is - sin t), you go down. At t = 4, your height is —sin 4 and your
velocity is — cos(—4) = —cos 4.
12 (a) f, = 2re®®, f,, = 2¢%%, fog = r3(24)%¢?* and f,, + L= + L4 = 0. Take real parts throughout to find
the same for r cos 20 (and imaginary parts for r?sin 26). (b) Any function f(re®®) has
fr =€ f'(re'®) and f,, = (¢*®)2f"(re®) and fp = ire® f'(re'®) and fog = 1%re’® ' + (ire'®)2 .
Any f(re®) or any f(z + iy) will satisfy the polar or rectangular form of Laplace’s equation.
&= 7m0+ ﬁ-:( t) = e = A
16 Since £ ; we must find & % = 0. The chain rule gives %% - ;ff% =g (e*) - 45,, (2¢t) = 0.
18 £ = (4t3)(1) + (0)(1) = 4¢°.

20 The rocket’s position is z = 6t,y = t2. Its speed from (0,0) is %+/(6t)2 + (t2)2 = (‘;‘:;,:E:’), . At t =0 this

speed is 32 = 6. Thera.teofcha.nge ofﬁ—ta.n_”— =tan"!%is 1_+$£_)? Att=0t.hisis %
22 Driving south = (. 05)(70) = 3.5 degrees per hour. Southeast now gives 2 = (. 05) + (- 01)
#s 3.4 degrees per hour. 4T is larger going south.

24 'd_z'ﬂt = 3‘5‘%"‘7&%&1"'7&% = (faur+ fyuz+ faus)our +(fava + fyua+ frus)yuz+(fotr + fyua+ frus),us = -
fnul + 2fxyujqug + fyyug + 2fxgujug + 2fyzﬁ2u3 + fnug. For f = zyz this is
2zu1u2 + 2yu;j u3 + 2zuqug = 6tu1u2u3 Check: f = ujuzust® and fi = 6ujuqust.
83 = 2(z +y) and "' = —17 W Yes: The product is 1 because y is constant.
28 -;,{ =2dz 5{;;} 3(x +y)3(t + t2) and L = 3(x + y)2(1 + 2t) + 8(x + y)(t + t2)2.
80 f., = 90a%(ax + by + c)® and (at+bt+c)!® has f,; = 90(a + b)3(at + bt + c)8. It is false that 2L 2z = &L
(we also need the term ‘—’i-a-!).
— z Ir

=z -_ —_2¥_ _zy
32 and then 8!’ az ey = Tty .

_ . _ l,:_,. 2_32/\/,z+ 2 2l4y?—g? 3 —z
s fz . Y‘T,‘f = T = i = i fe = it

36 Yes, i y is simply held constant then the old rule continues to apply.
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3 P

58 %(s,00) = B + B+ 2.

40 (a) 3L =2x (b) f =22+ 4 + (2 + ¥*)? s0 &L = 2x + ax(x? +y?)
(c) %zl + %Eg—: =2z + 22(2z) = 2x + 4x(x2 + y2) (d) y is constant for (35),.

42 (&) = —g—-g— 9F and similarly (3%)p = - 3% /55 and ($5)v = — 45 /3% Multiply these three equations:
the right hand sides produce —1.

ui= '—gé(l)+%£(u) and ¥ = %5(1)+g£(t). For f = 22 —2y these become & = 2z(1)—2(u) = 2(t+u)—2u =
2t and similarly 3 = 2u. Check: f = (t + u)? — 2tu = t2 + u? has f, = 2t and f, = 2u.

46 sinz + siny = 0 gives cosz-{-cosy%’zl =0and —sinz — siny(%)z +cosy‘;—:¥ = 0. Then % = —£082 apd

cosy
dy __ sinz-{-sinym;-f-
dz3 — cosy *

48 The c derivative of f(cz,cy) = cf(z,y) is x%ﬁ(cz, cy) + y%(cz, cy) = f(z,y). At ¢ = 1 this becomes
x-gxf-(x,y) +y?—,§,(x,y) =f(x,y). Test on f = /22 + y2 : zﬁ + y—;\/T-“—;; =22 + 42
Test on f = (/zy : z(%ﬁ) + y(%%) = /zy. Other examples: f(z,y) = Vaz? + bzy + cy?
or f=Az+ By or f=x1/4ys/ .

13.6 Maxima, Minima, and Saddle Points (page 512)

A minimum occurs at a stationary point (where f; = f, = 0) or a rough point (no derivative) or a
boundary point. Since f = z2 — zy + 2y has f, = 2x — y and f, = 2 — x, the stationary point is z = 2,y = 4.

This is not a minimum, because f decreases when y = 2z increases.

The minimum of d? = (z— z1)? + (y — y1)? occurs at the rough point (x1,yq). The graph of d is a cone and
grad d is a unit vector that points out from (xj,yy). The graph of f = |zy| touches bottom along the lines x
= 0 and y = 0. Those are “rough lines” because the derivative does not exist. The maximum of d and f

must occur on the boundary of the allowed region because it doesn’t occur inside.

When the boundary curve is z = z(t), y = y(t), the derivative of f(z,y) along the boundary is fxx + fyyy
(chain rule). If f = 22 + 2y? and the boundary is z = cost,y = sint, then df /dt = 2 sin t cos t. It is zero at
the points t = 0,7/2, x,8r/2. The maximum is at (0,+1) and the minimum is at (+1,0). Inside the circle f

has an absolute minimum at (0,0).

To separate maximum from minimum from saddle point, compute the second derivatives at a stationary
point. The tests for a minimum are fxox > 0 and fxxfyy
> f,%y. The tests for a maximum are fxx < 0 and fxxfyy > f,%y. In case ac < bZ or frzfyy < f,%y, we have a
saddle point. At all points these tests decide between concave up and concave down and “indefinite”. For
f = 8z% — 6zy + y2, the origin is a saddle point. The signs of f at (1,0) and (1,3) are + and —.

The Taylor series for f(z,y) begins with the terms f(0,0) + xfx + yfy + %xzfxx + xyfxy +%y2fyy. The
coefficient of z"y™ is 30+ f/3x13y™ (0, 0) divided by n'm! To find a stationary point numerically, use New-
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ton’s method or steepest descent.

1 (0,0) is a minimum $ (3,0) is a saddle point B No stationary points 7 (0,0) is a maximum
9 (0,0,2) is a minimum 11 All points on the line z = y are minima 18 (0,0) is a saddle point
15 (0,0) is a saddle point; (2,0) is a minimum; (0, —2) is a maximum; (2, —2) is a saddle point
17 Maximum of area (12 — 3y)y is 12
19 2(z+y)+2(z+2y—5)+2(z+3y—4)=0
2(z+y) +4(z+2y—5)+6(z+3y—4)=0
21 Minimum at (0, 1); (0,1); (0, 1)
238 % =0 when tant = V/3; frnax = 2 at (L, -‘@), fmin = —2 at (—%,—32@)
25 (62 + bY)max = Va2 + % (22 + ¥ )min = rhyr 2T 0<c<
29 The vectors head-to-tail form a 60-60-60 triangle. The outer angle is 120° 812+3;14+31+ 51%
85 Steiner point where the arcs meet 89 Best point for p = oo is equidistant from corners
4l grad f = (V2 i el %‘,ﬁ Lo 4 ¥9ia 4 ¥703); angles are 90-135-135
43 Third derivatives all 6; f = $2° + %zzy + %zy’ + 5y
45 (-g—z-)"(g;)"' In(1 — zy)jo,0 = n!(n — 1)! for m = n > 0, other derivatives zero; f = —zy — “—’2”1 - ’—‘391 -
47 All derivatives are ¢? at (1,1); fm e*[1+ (z— 1)+ (y— 1)+ 3(z— 1)? + (z - 1)(y — 1) + L (y — 1)?]
49z=1y=-1:f,=2,f, ==2,f22 =2, fay = 0, fyy = 2; series must recover z2 + y?
51 Line z — 2y = constant; z + y = constant
53 s?’fzz + zﬂfzy + "gifyy]o,o; fze > 0 and fzzfyy > 3y at (0’0); Jz = fy =0 556 Az=-1,Ay=-1
57 f = 2%(12 — 4z) has fuax = 16 at (2,4); line has slope —4,y = 13 has slope =32 = —4
59 If the fence were not perpendicular, a point to the left or right would be closer

gives :: 3;1 min because E,. Ey, = (6)(28) > E2, = 122

2 fr=y—1,fy=z—1;b%—ac=1;(1,1) is a saddle point

4 f. =2z, f, = —2y + 4;b% — ac = 1;(0,2) is a saddle point

6 fr =¥ — ¢, f, = ze¥; (0, 0) is the stationary point; f,z = —€* = —1, foy = ¥ =1, fyy = ze¥ =030
b2 — ac = 1: saddle point

8 f2=2(z+y)+2(z+2y—6), fy =2(z+y) + 4(z + 2y — 6); (—6, 8) is the stationary point: f;; =4,
fzy =6, fyy = 10 give b? — ac = —4 : minimum

10 f, = z+2y—6+z+y and f, = z+2y—6+2(z+y); (—6, 6) is the stationary point; fzz = 2, fzy =3, fyy = 4
give b2 — ac = 9 — 8 = 1: saddle point

12 f, = -1—3_%; and f, = :(2-1”;(,_17}*)9;1; (0,0) is the stationary point; fz, = %; =2, fzy = 1’_‘_4; =0,
foy = :(%(_:—;ﬁ;l + gf;-_'(_l—y';’)-’;l = —2;b% — ac = 4 : saddle point

14 f; = cos z and f, = siny; stationary points have x = § + nx and y = m#; maximum when f =2,
saddle point when f = 0, minimum when f = -2

18 f, = 8y — 4z° and f, = 8z — 4y°; stationary points are (0,0) = saddle point, (v'2,V2) = mazimum,
(-v2,-V2) = minimum.

18 Volume = zyz = zy(1 — 3z — 2y) = zy — 32% — 224*;V, =y — 6z — 2y® and V,, = z — 4zy; at (0,1,0) and
(3,0,0) and (0,0,1) the volume is V = 0 (minimum); at (%, 12, 21) the volume is V = 3073 (mazimum)

20 Minimize f(z,y) = (z—y—1)2+(2z+y+1)>+(z+2y—1)% : & = 2(z—y—1) +4(2z+y+1)+2(z+2y—1) =0
and %‘5 =-2(z-y—1)+2(2z+y+1)+4(z+ 2y — 1) = 0. Solution: x =y = 0!

22 4L = 2z + 2 and %‘5 = 2y + 4. (a) Stationary point (—1, —2) yields fyin = —5. (b) On the boundary y =0
the minimum of z2 + 2z is —1 at (—1,0) (c) On the boundary z > 0,y > 0 the minimum is 0 at (0,0).
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24 f( 25, ﬁ) ~VEf(-d5-3) = § + VI = fuuxi [(1,0) = £(0,1) = 1= fuia

26 f,=2°—-y=0and f, = ya—z—0combme1ntoy—z = y°. Then y = ¢° gwesy—lor—l or 0.
At those points fiin = —% and f = O (relative maximum). These equations z° = y,y® = z are solved
by Newton’s method in Section 13.3 (the basins are on the front cover).

28d, =z,dg=ds=+/(1-2)2+1,L(z+2/(1-2)2 + )—1+72-"—_)—}:—0when(1 z)2+1=4(z-1)?

orl—z= 715 orz=1- 18' From that point to (1,1) the line goes up 1 and across 7;, a 60° angle
with the horizontal that confirms three 120° angles.

80 dy = v/(z — 21)? + (y — %1)? + (2 — z1)? and then grad d, = (232, L5I4, £251) hag length |grad dy| = 1.
This gradient of d; points directly away from (21, y;,zl) The gradient of f =d; +dz+ds+dsisa
sum of 4 unit vectors. The sum is sero for = (1 1), 1 ( -1,-1,1), ﬁ(—l, 1,-1), %(1, 1,1).

The equal angles have cosd = —l by Problem 45 of Sectlon 11.1.

82 From an outside point the lines to the three vertices give two angles that add to less than 180°. So they
cannot both be 120° as a Steiner point requires.

84 From the point C = (0, —+/3) the lines to (—1,0) and (1,0) make a 60° angle. C is the center of the circle
z2 + (y — V/3)? = 4 through those two points. From any point on that circle, the lines to (—1,0) and (1,0)
make an angle of 2 x 60° = 120°. Theorem from geometry: angle from circle = 2 X angle from center.

40 The vertices are (0,0), (1,0), and (0,1). The point (3, 3) is an equal distance (%) from all three vertices.
Note: In any triangle the intersection of the altitudes (perpendicular to edges at their midpoints)
is equally distant from the vertices. If it is in the triangle, it is the best point with p = co : it minimizes

the largest distance.
42 For two points, d; + dz is a minimum at all points on the line between them. (Note equal 180° angles from
the vertices!) For three points, the corner with largest angle is the best corner.
44 82,.;”,,. (ze¥) = zeV for n = 0, ¢¥ for n = 1, gero for n > 1. Taylor series ze¥ = x +xy + %—lxy2 + 31—!xy3 +---
46 All derivatives equal 1 at (0,0). Quadratic=1+x+y+ %x +xy+3 1y2,
(smzcos y) =1 at (0,0) but f fv= f,,,, = fay = fyy =0. Quadratlc = X.
Check. sinzcosy ms (z— —"- )1 - L +-)== to qua.dra.tu: accuracy.
80 f(z+h,y+ k) =~ f(z,y) +h 2 (z,y) +k y(z,y) + & 2 %;g(z,y) + hk 3> 3,,(1‘,3/) +5 2 8y7 2-{(z,y)
52 (z%ﬁ- + y% + z%f)(o, 0,0); then (‘;—’fn + ”.;fw + % f,, + 2Yfay + 22f2s + yz£y:)(0,0,0)
B4 f=(1-2)2+2(1-4s)? has L =0 ats= . Stependsat z=1-2s= s,y =1-ds = -3,
56 A maximum has f;; < 0 and fyy <0, so they cannot add to sero. A minimum has f;; > 0 and f,y > 0.
The functions zy and z2 — y? solve fzz + fyy = 0 and have saddle points.
58 A house costs p, a yacht costs ¢ : £ f(z, k—';e-’f) = %ﬁ + %‘5(—5) = 0 gives -—%ﬁ/%{’- = -

13.7 Constraints and Lagrange Multipliers (page 519)

A restriction g(z,y) = k is called a constraint. The minimising equations for f(z,y) subject to g = k are
of /ox = A\3g/dx, 5f [8y = A\3g/3y, and g = k. The number ) is the Lagrange multiplier. Geometrically, grad
f is parallel to grad g at the minimum. That is because the level curve f = fy,;, is tangent to the constraint
curve g = k. The number A turns out to be the derivative of fynin with respect to k. The Lagrange function is
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L = f(x,y) — A(g(x,y) — k) and the three equations for z,y, A are dL/x = 0 and JL/dy = 0 and 8L/3) = 0.

To minimise f = 22 — y subject to g = z — y = 0, the three equations for z,y, A are 2x A, —-1=-),
x —y = 0. The solution is x = %,y = %,A = 1. In this example the curve f(z,y) = fmin = —— is a parabola
which is tangent to the line g = 0 at (Zmin, Ymin)-

With two constraints g¢(z,y,z2) = k; and h(z,y,2) = k; there are two multipliers Ay and Aq.
The five unknowns are X,y, 3,3, and Ap. The five equations are fx = Ajgx + Aghx,fy = Aygy + Aghx,
fg = 185 + Aghg,g = 0, and h = 0. The level surface f = fu, is tangent to the curve where g = k; and
h = kj. Then grad f is perpendicular to this curve, and so are grad g and grad h. With nine variables and
six constraints, there will be six multipliers and eventually 15 equations. If a constraint is an inequality g < k,
then its multiplier must satisfy A < 0 at a minimum.

1f=a+(k—22)% L = 22— 4(k - 22) = 0; (%, ), & 8 )= 4,201 = 2, Ymin = 2
5= ﬁﬂ- (z,y) = (£2/5,0) or (0, £2Y/%), fuin = 21/3 =1:(z,y) = (£1,£1), fmax =2
7 A= },(z,v) = (2,-3); tangent line is 2z — 3y = 13
9(1-c)?+(~a—c)?+(2—a—-b—c)?+(2—b—c)? is minimized at a = —4,b =

11 (1,-1) and (-1,1);A= -3

13 f is not a minimum when C crosses to lower level curve; stationary point when C is tangent to level curve

15 Substituting & —& QL =0 and L = fpin leaves Qt#n =

17 22 is never negatlve, (0 0), 1 = A(—3y?) but y = 0; g = 0 has a cusp at (0,0)

192z =7y + A2,4y = A1,22= A1 ~ A3, 2+ y+2z=0,z—z=1gives Ay =0,z = 1, fyin = % at (%,0,—.}—!)

21 (1,0,0);(0,1,0); (A1, 23,0);z=y =0 28 L and 3L;2 =0

25 (1,0,0), (0, 1,0),(0,0,1); at these points f = 4 and —2 (min) and 5(max)

27 By increasing k, more points are available 80 fi,ax goes up. Then A = gﬁ“ >0

29 (0,0); A = 0; frin stays at 0

815 =11 +A2,6 = A; + A3, A3 > 0,A3 < 0; subtraction 5 — 6 = A3 — A3 or —1 > O (impossible);

z = 2004,y = —2000 gives 5z + 6y = —1980
88 2z = 4)1 + 3,2y = 4A1 + A3, A2 2 0, A3 > 0,4z + 4y = 40; max area 100 at (10,0)(0,10); min 25 at (5,5)

(M2

=3
4

2 22 + y? = 1 and 2zy = A(2z) and 2% = A(2y) yield 202 + A2 = 1. Then A = v,— gives Zyax = ﬁ:£
Ymax = 33§: max — '—g Also A = —T gives f,;;, = “%-

4 22 + 9y =1 and 3 = A(2z) and 1 = A(18y) give 35($ +9- 137) = 1 or A2 = 4L, Then zpax = \/—,
Ymax ﬁ,fm“ = 3§: Change signs for (2, y, f)min- Second approach: Fix 3z + y and maximize
72 + 9.

61=3(%)?Pand1= Bz )1/3 yield 1= 3(%})? or 2 = (4)1/3. Then 2= ()*=%s0y=2z The
constraint gives 31/3(23)2/3 korz= k(4) 1/3 and then y = 2k(4)~1/%, Then f = z + y = 3k(4)~1/3.
8 a = A(22),b = A(2y),c = A(22) give g35(a® + b2+ c?) = k? and A = Va2 + bZ + ¢2/2k. Then
Zmax = 6k/Va? + b2 + 2, ymax = bk/ Va? + % + ¢2, and zmax = ck/Va? + b2 + c2.
Thus (a,b,c) - (%,,2) < fmax = VaZ + b2 + ¢2 k is the Schwars inequality.
10 The base is b, the rectangle height is a, the tria.ngle height is A, the area is ab + 1bh =1.

Minimize f = b+ 2a + 24/b2/4 + h2. The £, &, £ equations are 2 = \b, m = A(1b),
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13.7 Constraints and Lagrange Multipliers (page 519)

1+ W = A(a + 3h). Put Ab = 2 in the second equation and square: (2h)? = % + A2 or b2 = b?/12.

The third equation becomes 1 + 1173 = Aa+ ﬁﬁ) = la+ \/17 Then Aa=1+ 3@

The area is 35([(1+ 3@)(2) +3(2) ﬁ] =180 A% = 2 + /3. This gives b, k, and a. (Not an easy problem!)
12 y = A\(2z) and z = A(2y) require 2A = 1 or 2A = —1. Then y = +z. The equation z2 + y* = 2 gives 22 = 1.
The maximum isat x=1,y=1lorx= -1,y = —1.
14 (a) y— 1= A(2z),2 - 1= A(2y),22 + y* = 1 (b) 2 = y = 1455 (c) At A = —1 both equations become
z+y =1 and we find the minimum points (1,0) and (0,1) where z # y.
18 Those equations come from the chain rule: 4‘1 = 0 along the curve because g = constant. Together the two
equations giv "f A—E 0 (the Lagrange equatlon)
18 f=2z+y= 1001 at the point z = 1000,y = —999. The Lagrange equations are 2=X and 1=\
(no solution). Linear functions with linear constraints generally have no maximum.
20 (a)yz=Azz=Azy=A andz+y+z=kgivezs=y=z=%and A= % (b) Vmax = (]3‘-)3
80 Vpax/0k = k2/9 (which is A!) (c) Approximate AV = A times Ak = %(111 — 108) = 8888 in®.
Exact AV = (111)3 — (128)3 = 3677 in®.

22 2z = Aa,2y = Ab,22 = Ac and az + by + cz = d give A(a +42+c?)=2dand z = — = ;7_;9,,%;_;; Similarly
y= W and z = m Then £, ———ﬁ is the square of the minimum distance.

243=)A; + )2 and 5 =2); + As with A2 >0 a.nd 1\3 > 0 2 = 0 1s impossible because then A; = 3,13 = —1.
SoAg =0,A; = 2,A2 = 1. The minimum is f = 10 at x = 0,y = 2. (Note A = 0 goes with y # 0.)

26 Reasoning: By increasing k, more points satisfy the constraints. More points are available to minimize f.
Therefore fnin goes down.

28 A = 0 when h > k (not h = k) at the minimum. Reasoning: An increase in k leaves the same minimum.
Therefore fnin is unchanged. Therefore A = dfy,i, /dk is sero.

30 f =22 + y?, 2+ y > 4 has minimum at x = y = 2. From 2z = A(1) and 2y = A(1), the multiplier is A = 4
and fuin = 8. Change to z +y > 4+ dk. Then fuin = 8 + Adk = 8 + 4dk. Check: Zmin = Ymin = %(4 + dk)
give fmin = (1)2(4 + dk)?(2) = 8 + 4dk + 1(dk)2.

82 Lagrange equations: 2 = A; + A2,3 = A1 + A3,4 = A1 + Ay. Then Ay > A3 > A2 > 0. We need Ay > 0 and
As > 0 (correction: not = 0). Zero multiplier goes with nonzero x = 1. Nonzero multipliers go with
y=2z=0. Then fpin = 2. (We can see directly that fui, = 2.)
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