CHAPTER 12 MOTION ALONG A CURVE

12.1 The Position Vector (page 452)

The position vector $\mathbf{R}(t)$ along the curve changes with the parameter t. The velocity is $d\mathbf{R}/dt$. The acceleration is $d^2\mathbf{R}/dt^2$. If the position is $\mathbf{i} + t\mathbf{j} + t^2\mathbf{k}$, then $\mathbf{v} = \mathbf{j} + 2\mathbf{t}\mathbf{k}$ and $\mathbf{a} = 2\mathbf{k}$. In that example the speed is $|\mathbf{v}| = \sqrt{1 + 4t^2}$. This equals $d\mathbf{s}/dt$, where s measures the distance along the curve. Then $s = \int (d\mathbf{s}/dt)dt$. The tangent vector is in the same direction as the velocity, but T is a unit vector. In general $\mathbf{T} = \mathbf{v}/|\mathbf{v}|$ and in the example $\mathbf{T} = (\mathbf{j} + 2\mathbf{t}\mathbf{k})/\sqrt{1 + 4t^2}$.

Steady motion along a line has $\mathbf{a} = \mathbf{z}\mathbf{e}\mathbf{r}\mathbf{o}$. If the line is x = y = z, the unit tangent vector is $\mathbf{T} = (\mathbf{i} + \mathbf{j} + \mathbf{k})/\sqrt{3}$. If the speed is $|\mathbf{v}| = \sqrt{3}$, the velocity vector is $\mathbf{v} = \mathbf{i} + \mathbf{j} + \mathbf{k}$. If the initial position is (1,0,0), the position vector is $\mathbf{R}(t) = (\mathbf{1} + t)\mathbf{i} + t\mathbf{j} + t\mathbf{k}$. The general equation of a line is $x = x_0 + tv_1$, $y = \mathbf{y}_0 + t\mathbf{v}_2$, $z = \mathbf{z}_0 + t\mathbf{v}_3$. In vector notation this is $\mathbf{R}(t) = \mathbf{R}_0 + t\mathbf{v}$. Eliminating t leaves the equations $(x - x_0)/v_1 = (y - y_0)/v_2 = (\mathbf{z} - \mathbf{z}_0)/v_3$. A line in space needs two equations where a plane needs one. A line has one parameter where a plane has two. The line from $\mathbf{R}_0 = (1, 0, 0)$ to (2, 2, 2) with $|\mathbf{v}| = 3$ is $\mathbf{R}(t) = (\mathbf{1} + t)\mathbf{i} + 2t\mathbf{j} + 2t\mathbf{k}$.

Steady motion around a circle (radius r, angular velocity ω) has $z = r \cos \omega t$, $y = r \sin \omega t$, z = 0. The velocity is $\mathbf{v} = -r\omega \sin \omega t \mathbf{i} + r \omega \cos \omega t \mathbf{j}$. The speed is $|\mathbf{v}| = r\omega$. The acceleration is $\mathbf{a} = -r\omega^2 (\cos \omega t \mathbf{i} + \sin \omega t \mathbf{j})$, which has magnitude $r\omega^2$ and direction toward (0,0). Combining upward motion $\mathbf{R} = t\mathbf{k}$ with this circular motion produces motion around a helix. Then $\mathbf{v} = -r\omega \sin \omega t \mathbf{i} + r\omega \cos \omega t \mathbf{j} + \mathbf{k}$ and $|\mathbf{v}| = \sqrt{1 + r^2\omega^2}$.

1 v(1) = i + 3j; speed $\sqrt{10}$; 3 $\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{\cos t}{-\sin t}$; tangent to circle is perpendicular to $\frac{x}{y} = \frac{\cos t}{\sin t}$ 5 v = e^t i - e^{-t} j = i - j; y - 1 = -(x - 1); xy = 1 **7** $\mathbf{R} = (1, 2, 4) + (4, 3, 0)t; \mathbf{R} = (1, 2, 4) + (8, 6, 0)t; \mathbf{R} = (5, 5, 4) + (8, 6, 0)t$ **9** $\mathbf{R} = (2+t, 3, 4-t); \mathbf{R} = (2+\frac{t^2}{2}, 3, 4-\frac{t^2}{2});$ the same line 11 Line; y = 2 + 2t, z = 2 + 3t; y = 2 + 4t, z = 2 + 6t**13** Line; $\sqrt{36+9+4} = 7$; (6, 3, 2); line segment **15** $\frac{\sqrt{2}}{2}$; 1; $\frac{\sqrt{2}}{2}$ **17** x = t, y = mt + b19 v = i - $\frac{1}{t^2}$ j, |v| = $\sqrt{1 + t^{-4}}$, T = v/|v|; v = $(\cos t - t \sin t)$ i + $(\sin t + t \cos t)$ j; |v| = $\sqrt{1 + t^2}$; T = v/|v|; v = i + 2i + 2k, |v| = 3, $T = \frac{1}{2}v$ 21 $\mathbf{R} = -\sin t \mathbf{i} + \cos t \mathbf{j} + \operatorname{any} \mathbf{R}_0$; same \mathbf{R} plus any wt **23** $\mathbf{v} = (1 - \sin t)\mathbf{i} + (1 - \cos t)\mathbf{j}; |\mathbf{v}| = \sqrt{2 - 2\sin t - 2\cos t}, |\mathbf{v}|_{\min} = \sqrt{2 - 2\sqrt{2}}, |\mathbf{v}|_{\max} = \sqrt{2 + 2\sqrt{2}};$ $\mathbf{a} = -\cos t \mathbf{i} + \sin t \mathbf{j}, |\mathbf{a}| = 1$; center is on x = t, y = t25 Leaves at $(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}); \mathbf{v} = (-\sqrt{2}, \sqrt{2}); \mathbf{R} = (\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}) + v(t - \frac{\pi}{8})$ 27 $\mathbf{R} = \cos \frac{\mathbf{a}}{\sqrt{2}}\mathbf{i} + \sin \frac{\mathbf{a}}{\sqrt{2}}\mathbf{j} + \frac{1}{\sqrt{2}}\mathbf{k}$ 29 $\mathbf{v} = \sec^2 t \,\mathbf{i} + \sec t \tan t \,\mathbf{j}; |\mathbf{v}| = \sec^2 t \sqrt{1 + \sin^2 t}; \mathbf{a} = 2 \sec^2 t \tan t \,\mathbf{i} + (\sec^3 t + \sec t \tan^2 t) \,\mathbf{j};$ curve is $y^2 - x^2 = 1$; hyperbola has asymptote y = x**31** If $\mathbf{T} = \mathbf{v}$ then $|\mathbf{v}| = 1$; line $\mathbf{R} = t\mathbf{i}$ or helix in Problem 27 $33 (x(t), y(t)) = \begin{array}{ccc} (2t, 0) & 0 \le t \le \frac{1}{2} & (3 - 2t, 1) & 1 \le t \le \frac{3}{2} \\ (1, 2t - 1) & \frac{1}{2} \le t \le 1 & (0, 4 - 2t) & \frac{3}{2} \le t \le 2 \\ 35 x(t) = 4\cos\frac{t}{2}, y(t) = 4\sin\frac{t}{2} & 37 \text{ F; F; T; T; F} & 39 \frac{y}{x} = \tan\theta \text{ but } \frac{y}{x} \neq \tan t \end{array}$ 41 v and w; v and w and u; v and w, v and w and u; not zero

43 u = (8, 3, 2); projection perpendicular to v = (1, 2, 2) is (6, -1, -2) which has length $\sqrt{41}$ **45** x = G(t), y = F(t); y = x^{2/3}; t = 1 and t = -1 give the same x so they would give the same y; y = G(F⁻¹(x))

- 2 The path is the line x + y = 2. The speed is $\sqrt{(dx/dt)^2 + (dy/dt)^2} = \sqrt{2}$.
- 4 $\frac{dy}{dt} = 6 2t = 0$ at t = 3, so the highest point is $\mathbf{x} = \mathbf{18}, \mathbf{y} = \mathbf{9}$. The curve is the parabola $y = x (\frac{x}{6})^2$, and $\mathbf{a} = -2\mathbf{tj}$.
- 6 (a) $x^2 = y$ so this is a parabola (b) $x^3 = y^2$ so $y = x^{3/2}$ is a power curve (c) $\ln x = t \ln 4$ so $y = \frac{4}{\ln 4}x$ is a logarithmic curve.
- 8 The direction of the line is 4i + 3j. This is normal to the plane 4x + 3y + 0z = 0. (The right side could be any number.) One line in this plane is 4x + 3y = 0, z = 0. (A point that satisfies those two equations also satisfies the plane equation.)
- 10 The line is $(x, y, z) = (3, 1, -2) + t(-1, -\frac{1}{3}, \frac{2}{3})$. Then at t = 3 this gives (0, 0, 0). The speed is $\frac{\text{distance}}{\text{time}} = \frac{\sqrt{9+1+4}}{3} = \frac{\sqrt{14}}{3}$. For speed e^t choose $(x, y, z) = (3, 1, -2) + \frac{e^t}{\sqrt{14}}(-3, -1, 2)$.
- 12 $\mathbf{x} = \cos \mathbf{e}^{\mathbf{t}}, \mathbf{y} = \sin \mathbf{e}^{\mathbf{t}}$ has velocity $\frac{dx}{dt} = (-\sin e^t)e^t, \frac{dy}{dt} = (\cos e^t)e^t$ and speed $\sqrt{(dx/dt)^2 + (dy/dt)^2} = e^t$. The circle is complete when $e^t = 2\pi$ or $\mathbf{t} = \ln 2\pi$.
- 14 $x^2 + y^2 = (1+t)^2 + (2-t)^2$ is a minimum when 2(1+t) 2(2-t) = 0 or 4t = 2 or $t = \frac{1}{2}$. The path crosses y = x when 1 + t = 2 t or $t = \frac{1}{2}$ (again) at $x = y = \frac{3}{2}$. The line never crosses a parallel line like x = 2 + t, y = 2 t.
- 16 (b)(c)(d) give the same path. Change t to 2t, -t, and t^3 , respectively. Path (a) never goes through (1,1). 18 If $x = 1 + v_1 t = 0$ and $y = 2 + v_2 t = 0$, the first gives $t = -\frac{1}{v_1}$ and then the second gives $2 - \frac{v_2}{v_1} = 0$
- or $2v_1 v_2 = 0$. This line crosses the 45° line unless $v_1 = v_2$ or $v_1 v_2 = 0$. In that case x = y leads to 1 = 2 and is impossible.
- 20 If $x\frac{dx}{dt} + y\frac{dy}{dt} = 0$ along a path then $\frac{d}{dt}(x^2 + y^2) = 0$ and $x^2 + y^2 = \text{constant}$.
- 22 If a is a constant vector the path must be a straight line (with uniform motion since $x = x_0 + x_1 t$ and $y = y_0 + v_2 t$ are the only functions with $\frac{d^2x}{dt^2} = 0 = \frac{d^2y}{dt^2}$). If the path is a straight line, a must be in the same direction as the line (but not necessarily constant).
- 24 $x = 1 + 2\cos\frac{t}{2}$ and $y = 3 + 2\sin\frac{t}{2}$. Check $(x 1)^2 + (y 3)^2 = 4$ and speed = 1.
- 26 $|\mathbf{a}| = \frac{d^2 s}{dt^2}$ when the motion is along a straight line. On a curve there is a turning component for example $\mathbf{x} = \cos \mathbf{t}, \mathbf{y} = \sin \mathbf{t}$ has $\frac{ds}{dt} = 1$ and then $\frac{d^2 s}{dt^2} = 0$ but $\mathbf{a} = -\cos t \mathbf{i} \sin t \mathbf{j}$ is not zero.
- 28 $\frac{ds}{dt} = \sqrt{(dx/dt)^2 + (dy/dt)^2 + (dz/dt)^2} = \sqrt{36 + 9 + 4} = 7$. The path leaves (1,2,0) when t = 0 and arrives at (13,8,4) when t = 2, so the distance is $2 \cdot 7 = 14$. Also $12^2 + 6^2 + 4^2 = 14^2$.
- **30** If the parametric equations are $\mathbf{x} = \cos \theta$, $\mathbf{y} = \sin \theta$, $\mathbf{z} = \theta$, the speed is $\sqrt{(dx/dt)^2 + (dy/dt)^2 + (dz/dt)^2} = \sqrt{(\sin^2 \theta + \cos^2 \theta)(d\theta/dt)^2 + (d\theta/dt)^2} = \sqrt{2}|d\theta/dt|$. (In Example 7 the speed was $\sqrt{2}$.) So take $\theta = \mathbf{t}/\sqrt{2}$ for speed 1.
- **32** Given only the path y = f(x), it is impossible to find the velocity but still possible to find the tangent vector (or the *slope*).
- **34** $x = \cos(1 e^{-t}), y = \sin(1 e^{-t})$ goes around the unit circle $x^2 + y^2 = 1$ with speed e^{-t} . The path starts at (1,0) when t = 0; it ends at $x = \cos 1, y = \sin 1$ when $t = \infty$. Thus it covers only one radian (because the distance is $\int (ds/dt) dt = \int e^{-t} = 1$). Note: The path $x = \cos e^{-t}, y = \sin e^{-t}$ is also acceptable,

going from $(\cos 1, \sin 1)$ backward to (1,0).

- **36** This is the path of a ball thrown upward: x = 0, $y = v_0 t \frac{1}{2}t^2$. Take $v_0 = 5$ to return to y = 0 at t = 10. **38** The shadow on the xz plane is $ti + t^8k$. The original curve has tangent direction $i + 2tj + 3t^2k$. This is never parallel to i + j + k (along the line x = y = z), because 2t = 1 and $3t^2 = 1$ happen at different times.
- 40 The first particle has speed 1 and arrives at $t = \frac{\pi}{2}$. The second particle arrives when $v_2 t = 1$ and $-v_1 t = 1$, so $t = \frac{1}{v_2}$ and $v_1 = -v_2$. Its speed is $\sqrt{v_1^2 + v_2^2} = \sqrt{2}v_2$. So it should have $\sqrt{2}v_2 < 1$ (to go slower) and $\frac{1}{v_2} < \frac{\pi}{2}$ (to win), OK to take $v_2 = \frac{2}{3}$.

42 v \times w is perpendicular to both lines, so the distance between lines is the length of

- the projection of $\mathbf{u} = \mathbf{Q} P$ onto $\mathbf{v} \times \mathbf{w}$. The formula for the distance is $\frac{|\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w})|}{|\mathbf{v} \times \mathbf{w}|}$.
- 44 Minimise $(1+t-9)^2 + (1+2t-4)^2 + (3+2t-5)^2$ by taking the t derivative: $2(t-8) + 2(2t-3)^2 + 2(2t-2)^2 = 0$ or 18t = 36. Thus t = 2 and the closest point on the line is x = 3, y = 5, z = 7. Its distance from (9, 4, 5) is $\sqrt{6^2 + 1^2 + 2^2} = \sqrt{41}$.
- 46 Time in hours, length in meters. The angle of the minute hand is $\frac{\pi}{2} 2\pi t$ (at t = 1 it is back to vertical). The snail is at radius t, so $x = t \cos(\frac{\pi}{2} - 2\pi t)$ and $y = t \sin(\frac{\pi}{2} - 2\pi t)$. Simpler formulas are $x = t \sin 2\pi t$ and $y = t \cos 2\pi t$.

12.2 Plane Motion: Projectiles and Cycloids (page 457)

A projectile starts with speed v_0 and angle α . At time t its velocity is $dx/dt = v_0 \cos \alpha dy/dt = v_0 \sin \alpha - gt$ (the downward acceleration is g). Starting from (0,0), the position at time t is $x = v_0 \cos \alpha t$, $y = v_0 \sin \alpha t - \frac{1}{2}gt^2$. The flight time back to y = 0 is $T = 2v_0(\sin \alpha)/g$. At that time the horizontal range is $R = (v_0^2 \sin 2\alpha)/g$. The flight path is a parabola.

The three quantities v_0, α, t determine the projectile's motion. Knowing v_0 and the position of the target, we cannot solve for α . Knowing α and the position of the target, we can solve for v_0 .

A cycloid is traced out by a point on a rolling circle. If the radius is a and the turning angle is θ , the center of the circle is at $x = a\theta$, y = a. The point is at $x = a(\theta - \sin \theta)$, $y = a(1 - \cos \theta)$, starting from (0,0). It travels a distance $3\pi^2$ in a full turn of the circle. The curve has a cusp at the end of every turn. An upside-down cycloid gives the fastest slide between two points.

1 (a) $T = 16/g \sec, R = 144\sqrt{3}/g$ ft, Y = 32/g ft 3 x = 1.2 or 33.5 5 $y = x - \frac{1}{2}x^2 = 0$ at $x = 2; y = x \tan x - \frac{g}{2}(\frac{x}{v_0 \cos \alpha})^2 = 0$ at x = R 7 $x = v_0\sqrt{\frac{2h}{g}}$ 9 $v_0 \approx 11.3$, $\tan \alpha \approx 4.4$ 11 $v_0 = \sqrt{gR} = \sqrt{980}$ m/sec; larger 13 $v_0^2/2g = 40$ meters 15 Multiply R and H by 4; $dR = 2v_0^2 \cos 2\alpha d\alpha/g, dH = v_0^2 \sin \alpha \cos \alpha d\alpha/g$ 17 $t = \frac{12\sqrt{2}}{10}$ sec; $y = 12 - \frac{144g}{100} \approx -2.1$ m; + 2.1m 19 $\mathbf{T} = \frac{(1-\cos\theta)\mathbf{i}+\sin\theta\mathbf{j}}{\sqrt{2-2\cos\theta}}$ 21 Top of circle 25 $ca(1-\cos\theta), ca\sin\theta; \theta = \pi, \frac{\pi}{2}$ 27 After $\theta = \pi : x = \pi a + v_0 t$ and $y = 2a - \frac{1}{2}gt^2$ 29 2; 3 31 $\frac{64\pi a^2}{3}; 5\pi^2 a^3$ 33 $x = \cos\theta + \theta \sin\theta, y = \sin\theta - \theta \cos\theta$ 35 $(a = 4) 6\pi$ **37** $y = 2\sin\theta - \sin 2\theta = 2\sin\theta(1 - \cos\theta); x^2 + y^2 = 4(1 - \cos\theta)^2; r = 2(1 - \cos\theta)$

- 2 $T = \frac{2v_0 \sin \alpha}{g}$ gives $1 = \frac{2(32) \sin \alpha}{32}$ or $\sin \alpha = \frac{1}{2}$ and $\alpha = 30^\circ$; the range is $R = \frac{v_0^2 \sin 2\alpha}{g} = 32(\frac{\sqrt{3}}{2}) = 16\sqrt{3}$ ft. 4 v(0) = 3i + 3j has angle $\alpha = \frac{\pi}{4}$ and magnitude $v_0 = 3\sqrt{2}$. Then v(t) = 3i + (3 - gt)j, v(1) = 3i - 29j(in feet), v(2) = 3i - 26j. The position vector is $\mathbf{R}(t) = 3ti + (3t - \frac{1}{2}gt^2)j$, with $\mathbf{R}(1) = 3i - 10j$ and $\mathbf{R}(2) = 6i - 58j$.
- 6 If the maximum height is $\frac{(v_0 \sin \alpha)^2}{2a} = 6$ meters, then $\sin^2 \alpha = \frac{12(9.8)}{30^2} \approx .13$ gives $\alpha \approx .37$ or 21° .
- 8 The path $x = v_0(\cos \alpha)t$, $y = v_0(\sin \alpha)t \frac{1}{2}gt^2$ reaches y = -h when $\frac{1}{2}gT^2 v_0(\sin \alpha)T h = 0$. This quadratic equation gives $T = \frac{v_0 \sin \alpha + \sqrt{v_0^2 \sin^2 \alpha + 2h}}{g}$. At that time $x = v_0(\cos \alpha)T$. The angle to maximize x has $\frac{dx}{d\alpha} = \frac{d}{d\alpha}v_0(\cos \alpha)T = 0$.
- 10 Substitute into $(gx/v_0)^2 + 2gy = g^2 t^2 \cos^2 \alpha + 2gv_0 t \sin \alpha t^2 = 2gv_0 t \sin \alpha g^2 t^2 \sin^2 \alpha$. This is less than v_0^2 because $(\mathbf{v_0} - \mathbf{g} \mathbf{t} \sin \alpha)^2 \ge 0$. For y = H the largest x is when equality holds: $v_0^2 = (gx/v_0)^2 + 2gH$ or $\mathbf{x} = \sqrt{\mathbf{v_0^2} - 2gH(\frac{\mathbf{v_0}}{\mathbf{g}})}$. If 2gH is larger than v_0 , the height H can't be reached.
- 12 T is in seconds and R is in meters if v_0 is in meters per second and g is in m/sec².
- 14 time = $\frac{\text{distance}}{\text{speed}}$ = $\frac{60 \text{ feet}}{100 \text{ miles/hour}}$ = $\frac{60 \text{ feet}}{100(5280) \text{ feet/hour}}$ = .41 seconds. In that time the fall $\frac{1}{2}gt^2$ is 2.7 feet. 16 The speed is the square root of $(v_0 \cos \alpha)^2 + (v_0 \sin \alpha - gt)^2 = v_0^2 - 2v_0(\sin \alpha)gt + g^2t^2$. The derivative is $-2v_0(\sin \alpha)g + 2g^2t = 0$ when $t = \frac{v_0(\sin \alpha)}{g}$. This is the top of the path, where the speed is a
- minimum. The maximum speed must be v_0 (at t = 0 and also at the endpoint $t = \frac{2v_0(\sin \alpha)}{g}$). 18 For a large v_0 and a given R= distance to hole, there will be *two* angles that satisfy $R = \frac{v_0^2 \sin 2\alpha}{g}$

The low trajectory (small α) would encounter less air resistance than the high trajectory (large α).

- 20 $\frac{dy}{dx} = \frac{\sin\theta}{1-\cos\theta}$ becomes $\frac{0}{0}$ at $\theta = 0$, so use l'Hôpital's Rule: The ratio of derivatives is $\frac{\cos\theta}{\sin\theta}$ which becomes infinite. $\frac{\sin\theta}{1-\cos\theta} \approx \frac{\theta}{\theta^2/2} = \frac{2}{\theta}$ equals 20 at $\theta = \frac{1}{10}$ and -20 at $\theta = -\frac{1}{10}$. The slope is 1 when $\sin\theta = 1 \cos\theta$ which happens at $\theta = \frac{\pi}{2}$.
- 22 Change Figure 12.6b so the line from C to the new P' has length d not a. The components are $-d\sin\theta$ and $-d\cos\theta$. Then $x = a\theta d\sin\theta$ and $y = a d\cos\theta$.
- 24 $\frac{dy}{dx} = \frac{\sin\theta}{1-\cos\theta}$ by Problem 20. The θ derivative is $\frac{(1-\cos\theta)\cos\theta-\sin\theta(\sin\theta)}{(1-\cos\theta)^2} = \frac{\cos\theta-1}{(1-\cos\theta)^2} = \frac{-1}{(1-\cos\theta)^2}$. This is $\frac{d}{d\theta}\left(\frac{dy}{dx}\right) = \frac{d^2y}{dx^2}\frac{dx}{d\theta}$. So divide by $\frac{dx}{d\theta} = 1 \cos\theta$ to find $\frac{d^2y}{dx^2} = \frac{-1}{(1-\cos\theta)^2}$. This is negative and the cycloid is convex down.
- 26 The curves $x = a \cos \theta + b \sin \theta$, $y = c \cos \theta + d \sin \theta$ are closed because at $\theta = 2\pi$ they come back to the starting point and repeat.
- 32 For c = 1 the curve is $x = 2\cos \theta$, y = 0 which is a horizontal line segment on the axis from x = -2 to x = 2. As in Problem 23, when a circle of radius 1 rolls inside a circle of radius 2, one point goes across in a straight line.
- **34** The arc of the big circle in the astroid figure has length 4θ (radius times central angle) so the arc of the small circle is also 4θ . Its radius is 1, so the indicated angle of 3θ plus the angle θ above it give the correct angle 4θ .

To get from O to P go along the radius to $(3\cos\theta, 3\sin\theta)$, then down the short radius to $(x, y) = (3\cos\theta + \cos 3\theta, 3\sin\theta - \sin 3\theta)$. Use $\cos 3\theta = 4\cos^3\theta - 3\cos\theta$ and $\sin 3\theta = -4\sin^3\theta + 3\sin\theta$ to convert to $x = 4\cos^3\theta$ and $y = 4\sin^3\theta$.

36 The biggest triangle in the "Witch figure" has side 2a opposite an angle θ at the point A.

So $\frac{2a}{\text{distance across}} = \tan \theta$ and $x = \text{distance across} = \frac{2a}{\tan \theta} = 2a \cot \theta$. The length OB is $2a \sin \theta$ (from the polar equation of a circle in Figure 9.2c, or from plane geometry). Then the height of

B is $(OB)(\sin \theta) = 2a \sin^2 \theta$. The identity $1 + \cot^2 \theta = \csc^2 \theta$ gives $1 + (\frac{x}{2a})^2 = \frac{2a}{y}$.

38 On the line $x = \frac{\pi}{2}y$ the distance is $ds = \sqrt{(dx)^2 + (dy)^2} = \sqrt{(\pi/2)^2 + 1} dy$. The last step in equation (5) integrates $\frac{\text{constant}}{\sqrt{y}}$ to give $\frac{\sqrt{\pi^2 + 4}}{2\sqrt{2g}} [2\sqrt{y}]_0^{2a} = \sqrt{\pi^2 + 4} \frac{2\sqrt{2a}}{2\sqrt{2g}} = \sqrt{\pi^2 + 4} \sqrt{\frac{a}{g}}$.

40 I have read (but don't believe) that the rolling circle jumps as the weight descends.

12.3 Curvature and Normal Vector (page 463)

The curvature tells how fast the curve turns. For a circle of radius a, the direction changes by 2π in a distance $2\pi a$, so $\kappa = 1/a$. For a plane curve y = f(x) the formula is $\kappa = |y''|/(1 + (y')^2)^{3/2}$. The curvature of $y = \sin x$ is $|\sin x|/(1 + \cos^2 x)^{3/2}$. At a point where y'' = 0 (an inflection point) the curve is momentarily straight and $\kappa = \text{zero}$. For a space curve $\kappa = |\mathbf{v} \times \mathbf{a}|/|\mathbf{v}|^3$.

The normal vector N is perpendicular to the curve (and therefore to v and T). It is a unit vector along the derivative of T, so N = T'/|T'|. For motion around a circle N points inward. Up a helix N also points inward. Moving at unit speed on any curve, the time t is the same as the distance s. Then |v| = 1 and $d^2s/dt^2 = 0$ and a is in the direction of N.

Acceleration equals $d^2s/dt^2 T + \kappa |v|^2 N$. At unit speed around a unit circle, those components are zero and one. An astronaut who spins once a second in a radius of one meter has $|a| = \omega^2 = (2\pi)^2$ meters/sec², which is about 4g.

 $1 \frac{e^{z}}{(1+e^{2s})^{3/2}} \quad 3 \frac{1}{2} \quad 5 \; 0 \; (\text{line}) \quad 7 \; \frac{2+t^{2}}{(1+t^{2})^{3/2}} \quad 9 \; (-\sin t^{2}, \cos t^{2}); \; (-\cos t^{2}, -\sin t^{2})$ $11 \; (\cos t, \sin t); \; (-\sin t, -\cos t) \quad 13 \; (-\frac{3}{5}\sin t, \frac{3}{5}\cos t, \frac{4}{5}); \; |\mathbf{v}| = 5, \; \kappa = \frac{3}{25}; \frac{5}{3} \; \text{longer}; \; \tan \theta = \frac{4}{3}$ $15 \; \frac{1}{2\sqrt{2}a\sqrt{1-\cos\theta}} \quad 17 \; \kappa = \frac{3}{16}, \\ \mathbf{N} = \mathbf{i} \quad 19 \; (0, 0); \; (-3, 0) \; \text{with} \; \frac{1}{\kappa} = 4; \; (-1, 2) \; \text{with} \; \frac{1}{\kappa} = 2\sqrt{2}$ $21 \; \text{Radius} \; \frac{1}{\kappa}, \; \text{center} \; (1, \pm \sqrt{\frac{1}{\kappa^{2}} - 1}) \; \text{for} \; \kappa \leq 1 \quad 23 \; \mathbf{U} \cdot \mathbf{V}' \quad 25 \; \frac{1}{\sqrt{2}} (\sin t \; \mathbf{i} - \cos t \; \mathbf{j} + \mathbf{k}) \quad 27 \; \frac{1}{2}$ $29 \; \text{N in the plane, } \; \mathbf{B} = \mathbf{k}, \; \tau = 0 \quad 31 \; \frac{d^{2}y/dx^{2}}{1+(dy/dx)^{2}} \quad 33 \; \mathbf{a} = 0 \; \mathbf{T} + 5\omega^{2} \mathbf{N} \quad 35 \; \mathbf{a} = \frac{t}{\sqrt{1+t^{2}}} \mathbf{T} + \frac{2+t^{2}}{\sqrt{1+t^{2}}} \mathbf{N}$ $37 \; \mathbf{a} = \frac{4t}{\sqrt{1+4t^{2}}} \mathbf{T} + \frac{2}{\sqrt{1+4t^{2}}} \mathbf{N} \quad 39 \; |F^{2} + 2(F')^{2} - FF''| / (F^{2} + F'^{2})^{3/2}$

2
$$y = \ln x$$
 has $\kappa = \frac{|y''|}{(1+y'^2)^{3/2}} = \frac{1/x^2}{(1+\frac{1}{x^2})^{3/2}} = \frac{x}{(x^2+1)^{3/2}}$. Maximum of κ when its derivative is zero:
 $(x^2+1)^{3/2} = x\frac{3}{2}(x^2+1)^{1/2}(2x)$ or $x^2+1=3x^2$ or $x^2=\frac{1}{2}$.
4 $x = \cos t^2$, $y = \sin t^2$ has $x' = -2t \sin t^2$ and $y' = 2t \cos t^2$. Then $x'' = -2\sin t^2 - 4t^2 \cos t^2$ and
 $y'' = 2\cos t^2 - 4t^2\sin t^2$. Therefore $\kappa = \frac{x'y''-y'x''}{(x'^2+y'^2)^{3/2}} = \frac{8t^3(\sin t^2)^2+8t^3(\cos t^2)^2}{(4t^2(\sin t^2)^2+4t^2(\cos t^2)^2)^{3/2}} = \frac{8t^3}{(4t^2)^{3/2}} = 1$.
Reason: κ depends only on the path (not the speed) and this path is a unit circle.
6 $x = \cos^3 t$ has $x' = -3\cos^2 t \sin t$ and $x'' = -3\cos^3 t + 6\cos t \sin^2 t$; $y = \sin^3 t$ has $y' = 3\sin^2 t \cos t$ and
 $y'' = -3\sin^3 t + 6\sin t\cos^2 t$. Then $x'y'' - y'x'' = -9\cos^2 t \sin^4 t - 9\sin^2 t \cos^4 t = -9\cos^2 t \sin^2 t$.

Also $(x')^2 + (y')^2 = 9\cos^4 t \sin^2 t + 9\sin^4 t \cos^2 t = 9\cos^2 t \sin^2 t$. The $\frac{3}{2}$ power is $27\cos^3 t \sin^3 t$ and division leaves $\kappa = \frac{1}{3\cos t \sin t}$.

- 8 $x = t, y = \ln \cos t \, \operatorname{has} x' = 1, x'' = 0, y' = \tan t, y'' = \sec^2 t$. Then $\kappa = \frac{\sec^2 t}{(1 + \tan^2 t)^{3/2}} = \frac{\sec^2 t}{\sec^3 t} = \cos t$. 10 Problem 6 has $\mathbf{v} = \frac{dx}{dt}$ i $+ \frac{dy}{dt}$ j $= -3\cos^2 t \sin t$ i $+ 3\sin^2 t \cos t$ j $= 3\cos t \sin t$ times a unit vector
 - $-\cos t \mathbf{i} + \sin t \mathbf{j}$. Perpendicular to **T** is the normal $\mathbf{N} = \sin t \mathbf{i} + \cos t \mathbf{j}$ (also a unit vector).
- 12 $x' = v_0 \cos \alpha, x'' = 0, y' = v_0 \sin \alpha gt, y'' = -g$. Therefore $|\mathbf{v}|^2 = v_0^2 (\cos^2 \alpha + \sin^2 \alpha) 2v_0 (\sin \alpha)gt + g^2 t^2$ or $|\mathbf{v}|^2 = \mathbf{v_0}^2 - 2\mathbf{v_0} (\sin \alpha)gt + g^2 t^2$. Also $\kappa = \frac{|x'y'' - y'x''|}{|v|^3} = \frac{gv_0 \cos \alpha}{|v|^3}$. (Note: $\kappa = \frac{g\cos \alpha}{v_0^2}$ at t = 0.)
- 14 When $\kappa = 0$ the path is a straight line. This happens when v and a are parallel. Then $v \times a = 0$.
- 16 In $\kappa = \frac{x'y''-y'x''}{(x'^2+y'^2)^{3/2}}$, doubling x and y multiplies κ by $\frac{4}{43/2} = \frac{1}{2}$. (Less curvature for wider curve.) The velocity has a factor 2 but the unit vectors **T** and **N** are unchanged.
- 18 Using equation (8), $\mathbf{v} \times \mathbf{a} = |\mathbf{v}|\mathbf{T} \times (\frac{d^2s}{dt^2}\mathbf{T} + \kappa(\frac{ds}{dt})^2\mathbf{N}) = \kappa |\mathbf{v}|^3\mathbf{T} \times \mathbf{N}$ because $\mathbf{T} \times \mathbf{T} = 0$ and $|\mathbf{v}|$ is the same as $|\frac{ds}{dt}|$. Since $|\mathbf{T} \times \mathbf{N}| = 1$ this gives $|\mathbf{v} \times \mathbf{a}| = \kappa |\mathbf{v}|^3$ or $\kappa = \frac{|\mathbf{v} \times \mathbf{a}|}{|\mathbf{v}|^3}$.
- 20 v and |v| and a depend on the speed along the curve; T and s and κ and N and B depend only on the path (the shape of the curve).
- 22 The parabola through the three points is $y = x^2 2x$ which has a constant second derivative $\frac{d^2y}{dx^2} = 2$. The circle through the three points has radius = 1 and $\kappa = \frac{1}{\text{radius}} = 1$. These are the smallest possible (Proof?)
- 24 If v is perpendicular to a, then $\frac{d}{dt}\mathbf{v}\cdot\mathbf{v} = \mathbf{v}\cdot\mathbf{a} + \mathbf{a}\cdot\mathbf{v} = 0 + 0 = 0$. So $\mathbf{v}\cdot\mathbf{v} = \text{constant}$ or $|\mathbf{v}|^2 = \text{constant}$. The path does *not* have to be a circle, as long as the speed is constant. Example: helix as in Section 12.1.
- 26 $\mathbf{B} \cdot \mathbf{T} = 0$ gives $\mathbf{B}' \cdot \mathbf{T} + \mathbf{B} \cdot \mathbf{T}' = 0$ and thus $\mathbf{B}' \cdot \mathbf{T} = 0$ (since $\mathbf{B} \cdot \mathbf{T}' = \mathbf{B} \cdot \mathbf{N} = 0$ by construction). Also $\mathbf{B} \cdot \mathbf{B} = 1$ gives $\mathbf{B}' \cdot \mathbf{B} = 0$. So \mathbf{B}' must be in the direction of \mathbf{N} .
- 28 The curve $(1, t, t^2)$ has $\mathbf{v} = (0, 1, 2t)$. So **T** is a combination of **j** and **k**, and so are $d\mathbf{T}/dt$ and **N**. The perpendicular direction $\mathbf{B} = \mathbf{T} \times \mathbf{N}$ must be **i**.
- **30** The product rule for $\mathbf{N} = -\mathbf{T} \times \mathbf{B}$ gives $\frac{d\mathbf{N}}{ds} = -\mathbf{T} \times \frac{d\mathbf{B}}{ds} \frac{d\mathbf{T}}{ds} \times \mathbf{B} = \mathbf{T} \times \tau \mathbf{N} \kappa \mathbf{N} \times \mathbf{B} = \tau \mathbf{B} \kappa \mathbf{T}.$ **32** $\mathbf{T} = \cos\theta \mathbf{i} + \sin\theta \mathbf{j}$ gives $\frac{d\mathbf{T}}{d\theta} = -\sin\theta \mathbf{i} + \cos\theta \mathbf{j}$ so $|\frac{d\mathbf{T}}{d\theta}| = 1$. Then $\kappa = |\frac{d\mathbf{T}}{ds}| = |\frac{d\mathbf{T}}{d\theta}||\frac{d\theta}{ds}| = |\frac{d\mathbf{H}}{d\theta}|.$

Curvature is rate of change of slope of path.

- **34** (x, y, z) = (1, 1, 1) + t(1, 2, 3) has $\mathbf{v} = (1, 2, 3)$ and $\frac{ds}{dt} = \frac{d^2s}{dt^2} = 0$. Then $\kappa = 0$. So $\mathbf{a} = \mathbf{0}$. This is uniform motion in a straight line.
- **36** $x' = e^t (\cos t \sin t), y' = e^t (\sin t + \cos t), x'' = e^t (\cos t \sin t \sin t \cos t), y'' = e^t (\sin t + \cos t + \cos t \sin t).$ Then $(\frac{ds}{dt})^2 = (x')^2 + (y')^2 = e^{2t} (\cos^2 t - 2\sin t \cos t + \sin^2 t + \sin^2 t + 2\sin t \cos t + \cos^2 t) = 2e^{2t}.$ Thus $\frac{ds}{dt} = \sqrt{2}e^t$ and $\frac{d^2s}{dt^2} = \sqrt{2}e^t$. Also $x'y'' - y'x'' = e^{2t} [(\cos t - \sin t)(2\cos t) - (\sin t + \cos t)(-2\sin t)] = 2e^{2t}.$ So $\kappa = \frac{1}{\sqrt{2}e^t}$ by equation (5). Equation (8) is $\mathbf{a} = \sqrt{2}e^t\mathbf{T} + \sqrt{2}e^t\mathbf{N}.$
- **38** The spiral has $\mathbf{R} = (e^t \cos t, e^t \sin t)$ and from Problem 36, $\mathbf{a} = (x'', y'') = (-2 \sin t e^t, 2 \cos t e^t)$. Since $\mathbf{R} \cdot \mathbf{a} = 0$, the angle is 90°.

12.4 Polar Coordinates and Planetary Motion (page 468)

A central force points toward the origin. Then $\mathbf{R} \times d^2 \mathbf{R}/dt^2 = \mathbf{0}$ because these vectors are parallel.

Therefore $\mathbf{R} \times \mathbf{dR}/dt$ is a constant (called H).

In polar coordinates, the outward unit vector is $\mathbf{u}_r = \cos\theta \mathbf{i} + \sin\theta \mathbf{j}$. Rotated by 90° this becomes $\mathbf{u}_{\theta} = -\sin\theta \mathbf{i} + \cos\theta \mathbf{j}$. The position vector \mathbf{R} is the distance r times \mathbf{u}_r . The velocity $\mathbf{v} = d\mathbf{R}/dt$ is $(d\mathbf{r}/dt)\mathbf{u}_r + (\mathbf{r} d\theta/dt)\mathbf{u}_{\theta}$. For steady motion around the circle r = 5 with $\theta = 4t$, \mathbf{v} is $-20 \sin 4t \mathbf{i} + 20 \cos 4t \mathbf{j}$ and $|\mathbf{v}|$ is 20 and \mathbf{a} is $-80 \cos 4t \mathbf{i} - 80 \sin 4t \mathbf{j}$.

For motion under a circular force, r^2 times $d\theta/dt$ is constant. Dividing by 2 gives Kepler's second law $dA/dt = \frac{1}{2}r^2d\theta/dt = \text{constant}$. The first law says that the orbit is an ellipse with the sun at a focus. The polar equation for a conic section is $1/r = C - D\cos\theta$. Using $\mathbf{F} = m\mathbf{a}$ we found $q_{\theta\theta} + \mathbf{q} = C$. So the path is a conic section; it must be an ellipse because planets come around again. The properties of an ellipse lead to the period $T = 2\pi a^{3/2}/\sqrt{GM}$, which is Kepler's third law.

1 j, -i; i + j = u_r - u_θ 3 (2, -1); (1, 2) 5 v = $3e^{3}(u_{r} + u_{\theta}) = 3e^{3}(\cos 3 - \sin 3)i + 3e^{3}(\sin 3 + \cos 3)j$ 7 v = -20 sin 5t i + 20 cos 5t j = 20 T = 20 u_θ; a = -100 cos 5t i - 100 sin 5t j = 100 N = -100 u_r 9 $r\frac{d^{2}\theta}{dt^{2}} + 2\frac{dr}{dt}\frac{d\theta}{dt} = 0 = \frac{1}{r}\frac{d}{dt}(r^{2}\frac{d\theta}{dt})$ 11 $\frac{d\theta}{dt} = .0004$ radians/sec; $h = r^{2}\frac{d\theta}{dt} = 40,000$ 13 mR × a; torque 15 $T^{2/3}(GM/4\pi^{2})^{1/3}$ 17 $4\pi^{2}a^{3}/T^{2}G$ 19 $\frac{4\pi^{2}(150)^{3}10^{27}}{(365\frac{1}{4})^{2}(24)^{2}(3600)^{2}(6.67)10^{-11}}$ kg 23 Use Problem 15 25 $a + c = \frac{1}{C-D}, a - c = \frac{1}{C+D}$, solve for C, D 27 Kepler measures area from focus (sun) 29 Line; x = 131 The path of a quark is $r^{2}(A + B\cos^{2}\theta - B\sin^{2}\theta) = 1$. Substitute x for r cos θ , y for r sin θ , and $x^{2} + y^{2}$ for r^{2} to find $(A + B)x^{2} + (A - B)y^{2} = 1$. This is an ellipse centered at the origin. (We know A > B because $A + B\cos 2\theta$ must be positive in the original equation).

33 $r = 20 - 2t, \theta = \frac{2\pi t}{10}, \mathbf{v} = -2\mathbf{u}_r + (20 - 2t)\frac{2\pi}{10}\mathbf{u}_{\theta}; \mathbf{a} = (2t - 20)(\frac{2\pi}{10})^2\mathbf{u}_r - 4(\frac{2\pi}{10})\mathbf{u}_{\theta}; \int_0^{10} |\mathbf{v}| dt$

- 2 The point (3,3) is at $\theta = \frac{\pi}{4}$. So $\mathbf{u_r} = \frac{1}{\sqrt{2}}(\mathbf{i} + \mathbf{j})$ and $\mathbf{u}_{\theta} = \frac{1}{\sqrt{2}}(-\mathbf{i} + \mathbf{j})$. If $\mathbf{v} = \mathbf{i} + \mathbf{j}$ then $\mathbf{v} = \sqrt{2}\mathbf{u_r}$. This is the velocity when $\frac{dr}{dt} = \sqrt{2}$ and $\frac{d\theta}{dt} = 0$. (Better question: If $\mathbf{R} = 3\mathbf{i} + 3\mathbf{j}$ then $\mathbf{R} = \underline{\qquad} \mathbf{u_r}$. Answer $r = \sqrt{18}$.)
- 4 $r = 1 \cos \theta$ has $\frac{dr}{dt} = \sin \theta \frac{d\theta}{dt} = 2 \sin \theta$. Then $\mathbf{v} = 2 \sin \theta \, \mathbf{u}_r + 2(1 \cos \theta)\mathbf{u}_{\theta}$. The cardioid is covered as θ goes from 0 to 2π . With $\frac{d\theta}{dt} = 2$ the time required is π .
- 6 The path $r = 1, \theta = \sin t$ goes along the unit circle from $\theta = 0$ to $\theta = 1$ radian, then backward to $\theta = -1$ radian, and oscillates on this arc. The velocity from equation (5) is $\mathbf{v} = r \frac{d\theta}{dt} \mathbf{u}_{\theta} = \cos t \mathbf{u}_{\theta}$; the acceleration is $\mathbf{a} = -\cos^2 t \mathbf{u}_r \sin t \mathbf{u}_{\theta}$: part radial from turning, part tangential from change of speed. $\mathbf{v} = \mathbf{0}$ when $\cos t = 0$ (top and bottom of arc: $\theta = 1$ or -1).
- 8 The distance $r\theta$ around the circle is the integral of the speed δt : thus $4\theta = 4t^2$ and $\theta = t^2$. The circle is complete at $t = \sqrt{2\pi}$. At that time $\mathbf{v} = r\frac{d\theta}{dt}\mathbf{u}_{\theta} = 4(2\sqrt{2\pi})\mathbf{j}$ and $\mathbf{a} = -4(8\pi)\mathbf{i} + 4(2)\mathbf{j}$.
- 10 The line x = 1 is $\mathbf{r} \cos \theta = \mathbf{1}$ or $r = \sec \theta$. Integrating $r^2 \frac{d\theta}{dt} = \sec^2 \theta \frac{d\theta}{dt} = 2$ gives $\tan \theta = 2t$. The point (1,1) at $\theta = \frac{\pi}{4}$ is reached when $\tan \theta = 1 = 2t$; then $\mathbf{t} = \frac{1}{2}$.
- 12 Since u_r has constant length, its derivatives are perpendicular to itself. In fact $\frac{du_r}{dr} = 0$ and $\frac{du_r}{d\theta} = u_{\theta}$.
- 14 $R = re^{i\theta}$ has $\frac{d^2R}{dt^2} = \frac{d^2r}{dt^2}e^{i\theta} + 2\frac{dr}{dt}(ie^{i\theta}\frac{d\theta}{dt}) + ir\frac{d^2\theta}{dt^2}e^{i\theta} + i^2r(\frac{d\theta}{dt})^2e^{i\theta}$. (Note repeated term gives factor 2.) The coefficient of $e^{i\theta}$ is $\frac{d^2r}{dt^2} - r(\frac{d\theta}{dt})^2$. The coefficient of $ie^{i\theta}$ is $2\frac{dr}{dt}\frac{d\theta}{dt} + r\frac{d^2\theta}{dt^2}$. These are the ur

and u_{θ} components of **a**.

- 16 The period of a satellite above New York is 1 day = 86,400 seconds. Then $86,400 = \frac{2\pi}{\sqrt{GM}}a^{3/2}$ gives $a = 4.2 \cdot 10^7$ meters = 420,000 km.
- 18 The period of the moon reveals the mass of the earth: 28 days $\cdot 86400 \frac{\sec}{\text{day}} = \frac{2\pi}{\sqrt{GM}} (380,000)^{3/2}$ gives $M = 5.54 \cdot 10^{24}$ kg. Remember to change 380,000 km to meters.
- 20 (a) False: The paths are conics but they could be hyperbolas and possibly parabolas.
 - (b) True: A circle has r = constant and $r^2 \frac{d\theta}{dt} = \text{constant}$ so $\frac{d\theta}{dt} = \text{constant}$.
 - (c) False: The central force might not be proportional to $\frac{1}{r^2}$.
- 22 $T = \frac{2\pi}{\sqrt{GM}} (9000)^{3/2} \approx .268$ seconds.
- 24 1 = Cr Dx is 1 + Dx = Cr or $1 + 2Dx + D^2x^2 = C^2(x^2 + y^2)$. Then $(C^2 D^2)x^2 + C^2y^2 2Dx = 1$. 26 Substitute $x = -c, y = \frac{b^2}{a}$ and use $c^2 = a^2 - b^2$. Then $\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{c^2}{a^2} + \frac{b^4/a^2}{b^2} = \frac{c^2+b^2}{a^2} = 1$.
- 28 If the force is $\mathbf{F} = -ma(r)\mathbf{u}_r$, the left side of equation (11) becomes -a(r). Gravity has $\mathbf{a}(\mathbf{r}) = \frac{\mathbf{GM}}{\mathbf{r}^2}$.
- **30** Multiply $q_{\theta\theta} + q = \frac{1}{q^3}$ by q_{θ} and integrate: $\frac{1}{2}q_{\theta}^2 + \frac{1}{2}q^2 = \int \frac{q_{\theta}}{q^3}d\theta = \frac{-1}{2q^2} + C$. Substituting $u = q^2$ and $u_{\theta} = 2qq_{\theta}$ (or $q_{\theta}^2 = \frac{u_{\theta}^2}{4q^2} = \frac{u_{\theta}^2}{4u}$) gives $\frac{u_{\theta}^2}{8u} + \frac{u}{2} = \frac{-1}{2u} + C$ or $u_{\theta}^2 = -4u^2 + 8uC - 4$. Integrate $\frac{du}{\sqrt{-4u^2 + 8uC - 4}} = d\theta$ which is inside the front cover to find $\theta + c = \frac{1}{2}\sin^{-1}\frac{u-C}{\sqrt{C^2 - 1}}$. Then $\frac{1}{r^2} = u = C + \sqrt{C^2 - 1}\sin(2\theta + c)$.
- **32** $T = \frac{2\pi}{\sqrt{2M}} (1.6 \cdot 10^9)^{3/2} \approx 71$ years. So the comet will return in the year 1986 + 71 = 2057.
- **S4** First derivative: $\frac{dr}{dt} = \frac{d}{dt} \left(\frac{1}{C D \cos \theta} \right) = \frac{-D \sin \theta \frac{d\theta}{dt}}{(C D \cos \theta)^2} = -D \sin \theta \ r^2 \frac{d\theta}{dt} = -Dh \sin \theta$. Next derivative: $\frac{d^2r}{dt^2} = -Dh \cos \theta \frac{d\theta}{dt} = \frac{-Dh^2 \cos \theta}{r^2}$. But $C - D \cos \theta = \frac{1}{r}$ so $-D \cos \theta = (\frac{1}{r} - C)$. The acceleration terms $\frac{d^2r}{dt^2} - r(\frac{d\theta}{dt})^2$ combine into $(\frac{1}{r} - C)\frac{h^2}{r^2} - \frac{h^2}{r^3} = -C\frac{h^2}{r^2}$. Conclusion by Newton: The elliptical orbit $r = \frac{1}{C - D \cos \theta}$ requires acceleration $= \frac{\text{constant}}{r^2}$: the inverse square law.