12.1 The Position Vector (page 452)

CHAPTER 12 MOTION ALONG A CURVE

12.1 The Position Vector (page 452)

The position vector R(t) along the curve changes with the parameter ¢. The velocity is dR/dt. The acceler-
ation is dzR/dtz. If the position is i + tj + t?k, thenv=j+ 2tk and a = 2k. In that example the speed is

[v| = V1 + 4t3. This equals ds/dt, where s measures the distance along the curve. Then s = [ (ds/dt)dt.
The tangent vector is in the same direction as the velocity, but T is a unit vector. In general T = v/|v| and

in the example T = (j + 2t k)/V'1 + 4t2.

Steady motion along a line has a = sero. If the line is z = y = z, the unit tangent vector is T = (i +j + k) /V/3.
If the speed is [v| = /3, the velocity vector is v = i+ j + k. If the initial position is (1,0,0), the position vector is
R(t) = (1 + t)i + t j + t k. The general equation of a line is z = zo+tv,, y = yg + tvg, 2z = 59 + t vg. In vector
notation this is R(t) = Rg + t v. Eliminating ¢ leaves the equations (z — zo)/v1 = (y — yo)/v2 = (3 — 2g)/vg.
A line in space needs two equations where a plane needs one. A line has one parameter where a plane has two.
The line from Ro = (1,0,0) to (2,2,2) with [v| = 3 is R(t) = (1+t)i+2tj+ 2t k.

Steady motion around a circle (radius r, angular velocity w) has z = r cos wt, y = r 8in wt, z = 0. The velocity
is v = —rw sin wt i+ r w cos wt j. The speed is |v| = rw. The acceleration is a = —rwz(cos wt i + sin wt j),
which has magnitude rw? and direction toward (0,0). Combining upward motion R = tk with this circular
motion produces motion around a helix. Then v = —rw sin wt i + rw cos wt j + k and |v| = V1 + r2w2.

1 v(1) = i + 3j; speed V/10; 3 % = :: g: = <08t tangent to circle is perpendicular to = cost

bv=ci-etj=i-jjy—1=—(z-1);zy=1
R=(1,2,4) + (4,3,0);R = (1,2,4) + (8,6,0)t; R = (5,5,4) + (8,6,0)t

=(2+1%3,4—t);R=(2+%,3,4— £); the same line

11 Line; y=2+2t,2=2+3t;y=2+4t,z=2+6t

18 Line; /36 + 9 + 4 = 7; (6, 3, 2); line segment 15 3?;1;32@ 1Tz=t,y=mt+b

19v=i-}j,[v|=vV1+t=% T = v/|v|;v = (cost — tsint)i + (sint + t cost)j; [v| = VI + £2;
T=v/|vjv=i+2j+2k,|v|=3,T=1v

21 R = —sint i+ cost j + any Ro; same R plus any wt

28 v = (1 — sint)i+ (1 — cost)j; |v| = V2 — 2smt — 2co8 ¢, [V|min = V2 — 2V2, [V]max = V2 + 2v2;
a——costi+sintj,|a|-1 centerisonz=t,y=t

25Lea.vesat(2,2)v—( -v2,V2);R = 2,2)—l-u(t 5

27R—-cos\/—l+sm—Lj+\/_

29 v =sec?t i+ secttant j;|v| = sec? tV1+ sin® t;a = 2sec? ttant i+ (sec®t + secttan?t) j;
curve is y2 — z2 = 1; hyperbola has asymptote y = z

81 If T = v then |v| = 1; line R = ¢i or helix in Problem 27
_ (2t,0) o<t<1 (3-2t1) 1<t<2
3 (=hy) = (15—1) L<e<] (0,4-20) P<t<?
35 z(t)=4c035,y(t)=43in2 8STF,F; T;T; F 89 £ =tand but £ # tant

41 v and w; v and w and u; v and w, v and w and u; not zero
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12.1 The Position Vector (page 452)

43 u = (8, 3,2); projection perpendicular to v = (1,2,2) is (6, —1, ~2) which has length /41
45 z = G(t),y = F(t);y = z2/3;t = 1 and t = —1 give the same z so they would give the same y;y = G(F~1(z))

2 The path is the line z + y = 2. The speed is \/(dz/dt)? + (dy/dt)? = /2.

4 %’f =6 —2t =0 at t = 3, so the highest point is x = 18,y = 9. The curve is the parabola y = z — (£)?,
and a = —2tj.

6 (a) x2 =y so this is a parabola (b) 2% = y? so y = x3/2
y= Eiix is a logarithmic curve.

8 The direction of the line is 4i + 8j. This is normal to the plane 4x + 8y + 0z = 0. (The right side could be
any number.) One line in this plane is 4x + 8y = 0,2 = 0. (A point that satisfies those two equations

is a power curve (c) Inz = tln4 so

also satisfies the plane equation.)
10 The line is (2, y, 2) = (3,1,-2) + t(—1,—1, Z). Then at ¢ = 3 this gives (0, 0, 0). The speed is
33 &
distance _ @ = 3%; For speed et choose (z,y,z) = (8,1,-2) + ‘—/ﬁﬁ(—s,q,z).

time

12 x = cos e!, y = sin et has velocity 9 — (—sinet)e, %‘f = (cose*)e* and speed +/(dz/dt)? + (dy/dt)? = .
The circle is complete when ¢ = 27 or t = In 2.

14 22 + y? = (1+¢)% + (2 - t)? is a minimum when 2(1 +t) —2(2—-t)=0ordt=2o0rt= % The path
crosses y =z when 1+t=2—tort= % (again) at x =y = % The line never crosses a parallel
line likex=2+t,y=2-t.

16 (b)(c)(d) give the same path. Change ¢ to 2¢t,—t, and ¢>, respectively. Path (a) never goes through (1,1).

18 fz=1+4v;t=0and y= 2+ vt =0, the first gives t = —ﬁ and then the second gives 2 — %}=0
or 2vy —vg = 0. This line crosses the 45° line unless v; = vz or vy —vg = 0. In that case z = y leads
to 1 = 2 and is impossible.

20 If 42 + y9 = 0 along a path then Eidf(xz +y2) = 0 and 22 + y? = constant.

22 If a is a constant vector the path must be a straight line (with uniform motion since z = zo + z;¢ and
y = yo + vat are the only functions with -“%} =0= %?-). If the path is a straight line, a must be
in the same direction as the line (but not necessarily constant).

24 z=1+2cos{ and y = 3 + 2sin . Check (z — 1)? + (y — 3)> = 4 and speed = 1.

26 |a| = ';:—; when the motion is along a straight line. On a curve there is a turning component — for example
x =cos8 t,y =sin t has z—: =1 and then % =0 but a=-—costi—sint jis not zero.

28 2 = \/(dz/dt)? + (dy/dt)? + (dz/dt)? = v/36 + 9 + 4 = 7. The path leaves (1,2,0) when ¢ = 0 and arrives at
(13,8,4) when t = 2, so the distance is 2 - 7 = 14. Also 122 + 62 + 42 = 142,

80 If the parametric equations are x = cos f,y = sin 6,z = 6, the speed is \/(dz/dt)2 + (dy/dt)? + (dz/dt)?
= \/(sin2 8 + cos? 6) (d6/dt)? + (df/dt)? = v/2|d8/dt|. (In Example 7 the speed was v/2.) So take § = t/v/2
for speed 1.

82 Given only the path y = f(z), it is impossible to find the velocity but still possible to find the
tangent vector (or the slope).

34 z = cos(1 —e~*),y = sin(1 — e~*) goes around the unit circle z% + y?> = 1 with speed e~*. The path starts
at (1,0) when ¢t = 0; it ends at z = cos 1,y = sin 1 when ¢ = oo. Thus it covers only one radian
(because the distance is f(ds/dt)dt = [ e~ = 1). Note: The path z = cose™t,y = sine™* is also acceptable,

124



12.2 Plane Motion: Projectiles and Cycloids (page 457)

going from (cos 1, sin 1) backward to (1,0).

86 This is the path of a ball thrown upward: z =0,y = vgt — %tz. Take vg = 6 to return to y = 0 at ¢ = 10.

38 The shadow on the zz plane is ti + t3k. The original curve has tangent direction i + 2tj + 3¢%k. This is never
parallel to i + j + k (along the line z = y = z), because 2t = 1 and 3t2 = 1 happen at different times.

40 The first particle has speed 1 and arrives at ¢ = 7. The second particle arrives when vyt = 1 and —v;t =1,
sot= % and v; = —v,. Its speed is m = +/2v,. So it should have \/fvz < 1 (to go slower) and
vlz < § (to win), OK to take v = §.

42 v X w is perpendicular to both lines, so the distance between lines is the length of
the projection of u = @ — P onto v X w. The formula for the distance is "—lﬁr%—:'r“

44 Minimise (1+¢—9)2+(1+2t—4)%+ (3+2t—5)? by taking the ¢ derivative: 2(t—8)+2(2t—3)2+2(2t—2)2=0
or 18t = 36. Thus t = 2 and the closest point on the line is x = 8,y = 5,5 = 7. Its distance from (9, 4, 5)

is V62 + 12 + 22 = \/41.

46 Time in hours, length in meters. The angle of the minute hand is § — 2x¢ (at t = 1it is back to vertical).
The snail is at radius ¢, so z = t cos(% — 2xt) and y = tsin(F — 2«t). Simpler formulas are
x=tsin2xt andy =t cos 2r t.

12.2 Plane Motion: Projectiles and Cycloids (page 457)

A projectile starts with speed vy and angle a. At time t its velocity is dz/dt = vq cos a,dy/dt = vg sin a — gt
(the downward acceleration is g). Starting from (0,0), the position at timetisz =vgcosat,y =vgsinat - %gtz.
The flight time back to y = 0 is T = 2vg(sin a)/g. At that time the horisontal range is R = (vg sin 2a)/g.
The flight path is a parabola.

The three quantities vp, a,t determine the projectile’s motion. Knowing vy and the position of the target,
we cannot solve for a. Knowing « and the position of the target, we can solve for vg.

A cycloid is traced out by a point on a rolling circle. If the radius is a and the turning angle is 4, the center
of the circle is at z = af,y = a. The point is at z = a(f — sin §), y = a(1 — cos 0), starting from (0,0). It travels

2

a distance 37 in a full turn of the circle. The curve has a cusp at the end of every turn. An upside-down

cycloid gives the fastest slide between two points.

1 (a) T = 16/gsec, R = 144/3/g ft,Y = 32/g ft 8z=12o0r335
By=z—32z2=0atz=2jy=xtanz— §(;-2%;7)>=0atz=R 7z=vo\/¥
9 yo w3 11.3,tancx = 4.4 11 vy = \/gR = /980 m/sec; larger 18 vZ/2g = 40 meters
15 Multiply R and H by 4; dR = 213 cos 2ada/g,dH = v} sinacos a da/g

— - — . — - i i
17t= 120 gec; y=12- 1 n ~21m; + 21m 19 T = U=spallbsing]
21 Top of circle 25 ca(1—cosf),casind;d =x,5 27 After § =n:z = xa+ vot and y = 2a — %gt2 29 2;3

31 6“" ;572a® 83z =cosf +0sinf,y=sinf —fcosf 85 (a=4)6x
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12.2 Plane Motion: Projectiles and Cycloids (page 457)

87 y = 2sinf —sin 26 = 2sin f(1 — cos 0); 22 + y? = 4(1 — cos 0)?;r = 2(1 — cos §)

2T = ?lﬂ;iﬂ gives 1 = 3@3}:& or sina = } and a = 30°; the range is R = '—'“L“z—a- 32(55) = 16/3 ft.
4 v(0) = 3i + 3j has angle a = J and magnitude vg = 8v/2. Then u(t) = 3i+ (3 — gt)J, v(1) = 3i — 29§
(in feet), v(2) = 3i — 26j. The position vector is R(t) = 3ti + (3t — 1gt?)j, with R(1) = 3i — 10 and
R(2) = 6i — 58j.
6 If the maximum height is Eﬂ%‘-"—ﬁ = 6 meters, then sin’a = %%9- & .13 gives a & .37 or 21°.
8 The path z = vp(cos a)t, y = vo(sin &)t — 1 gt? reaches y = —h when 3 gT? —vo(sin a)T —h = 0. This quadratic
equation gives T = = sinaty :3 sin a+3h At that time z = vo(cos ) T. The angle to maximize z
has 92 = L yy(cosa)T =0.
10 Substitute into (gz/vo)? + 2gy = ¢*t3 cos? a + 2gvptsin a — t2 = 2gupt sin & — g%t? sin? a. This is
less than v3 because (vg — g t sin cz)2 2 0. For y = H the largest z is when equality holds:
v = (9z/v0)? + 2gH or x = \/ 0~ ZgH(—gn). If 2gH is larger than vo, the height H can’t be reached.
12 T is in seconds and R is in meters if v, is in meters per second and g is in m/secz.
14 time = d—:% = 155 ﬁﬂi":;hom = 100(5283)";::t Jhour = -41 seconds. In that time the fall 39t is 2.7 feet.
16 The speed is the square root of (vp cos a)? + (vg sin a — gt)? = v3 — 2vp(sin a)gt + g?t2. The derivative
is —~2vp(sina)g + 2¢g°t =0 when t = -'iﬂ-(M This is the top of the path, where the speed is a

Yg(sin a

minimum. The maximum speed must be vo (at ¢t = 0 and also at the endpoint t = —-“L-—l)

18 For a large vp and a given R= distance to hole, there will be two angles that satisfy R = 3‘1'—;’133.

The low trajectory (small @) would encounter less air resistance than the high trajectory (large a).

20 -1 = 1"":‘0':9 becomes g at 0 = 0, so use ’Hopital’s Rule' The ratio of derivatives is £ g which

_8inf

becomes infinite. {255 ~ —,7— 5 2 equals 20 at § = a.nd —-20at = —-- The slope 181
when sin§ = 1 — cos# which happens at § = J.

22 Change Figure 12.6b so the line from C to the new P’ has length d not a. The components are
—dsinf and —dcosf. Then z = af — dsinf and y = a — d cos 6.

24 % = ;828 by Problem 20. The § derivative is {1—cos "(’1“:2,‘;)‘“ Olsin0) _ {c—“cf,, )7 = ;—=L. This

is E(ﬂ) = gz—’}% So divide by 4= % = 1—cos? to find :—z¥ = 1_—;;—0)—;. This is negative and the
cycloid is convex down.

26 The curves z = acosf + bsinf, y = ccosf + dsinf are closed because at § = 2% they come back to
the starting point and repeat.

82 For ¢ = 1 the curve is z = 2cos 6,y = 0 which is a horizontal line segment on the axis from z = —2
to z = 2. As in Problem 23, when a circle of radius 1 rolls inside a circle of radius 2, one point
goes across in a straight line.

84 The arc of the big circle in the astroid figure has length 46 (radius times central angle) so the
arc of the small circle is also 46. Its radius is 1, so the indicated angle of 34 plus the angle #
above it give the correct angle 46.

To get from O to P go along the radius to (3 cosd, 3sin §), then down the short radius to (z,y) =
(3cos 8 + cos 36, 3sin 6 — sin 34). Use cos 30 = 4 cos® § — 3 cos# and sin 30 = —4sin® § + 3sin 6
to convert to z = 4cos® § and y = 4sin> 4.
36 The biggest triangle in the “Witch figure® has side 2a opposite an angle § at the point A.
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12.3 Curvature and Normal Vector (page 463)

2a = tan @ and z = distance across = -22- = 2a cot 6. The length OB is 2asinf (from

So distance across tand
the polar equation of a circle in Figure 9.2, or from plane geometry). Then the height of

B is (OB)(sinf) = 2a gin? 0. The identity 1+ cot? § = cac? 6 gives 1 + (2’%)2 = 2y_a.

88 On the line z = Zy the distance is ds = \/(dz)? + (dy)? = v/(7/2)? + 1 dy. The last step in equation (5)
integrates °°‘::,;“‘t to give 3%‘5—5[2\/{]]3“ =2+ 43% =vx3 + 4\/§ .

40 I have read (but don’t believe) that the rolling circle jumps as the weight descends.

12.3 Curvature and Normal Vector (page 463)

The curvature tells how fast the curve turns. For a circle of radius a, the direction changes by 2x in a
distance 27a, so x = 1/a. For a plane curve y = f(z) the formula is x = |y |/(1 + (")%)3/2. The curvature of
y = sinz is [sin x|/(1 +cos%x)3/2. At a point where y* = 0 (an inflection point) the curve is momentarily
straight and « = zero. For a space curve x = |v x a|/|v|3.

The normal vector N is perpendicular to the curve (and therefore to v and T). It is a unit vector
along the derivative of T, so N = T'/|T’|. For motion around a circle N points inward. Up a helix N also
points inward. Moving at unit speed on any curve, the time ¢ is the same as the distance s. Then |v| = 1 and
d?s/dt? = 0 and a is in the direction of N.

Acceleration equals d2s/dt? T + |v|2 N. At unit speed around a unit circle, those components are zero
and one. An astronaut who spins once a second in a radius of one meter has |a| = w? = (27)2 meters/sec?,
which is about 4g.

1 m—:;;ym- 82 50(line) 7 (1-?& 4 9 (- sin 2, cos t2); (— cos t?, — sin t2)
11 (cost,sint); (—sint, — cost) 18 (—2sin¢,  cost, §);|v| =5,k = X; 3 longer; tanf = 2

16 ;p—fmees W k=, N=i 19(0,0);(-3,0) with } = 4;(~1,2) with } =2v2

21 Radius 1, center (1, %4/ % — 1) forlcszl 223U-V' 26 %(sinti—costj+k) 273 2
29 N in the plane, B =k, r =0 31% 83a=0T + 50°N 35a=——',1—:_72—T+—2it—,1—mN
STa= AT+ 2N 39 |F2+2(F)? - FF"|/(F? + F'?)/2

2y=Inzhas k= ——2—"-—3—2- Maximum of k¥ when its derivative is zero:

= 1= —
(1+y"2)32 7 1+ %) T x311)3
(22 +1)%2 = z3(22 + 1)1/3(2z) or 22 + 1 = 322 or x% = %
4 z = cost?,y = sint? has 2’ = ~2tsint? and y’ = 2t cost?. Then z” = —2sint? — 4¢2 cos t? and
. 1000 3y s 2313 3 3,3 3 )
y" = 2cost® — 4t sin t2. Therefore x = ifrfrv%)%/—, =@ f,'('gl‘:'f),) +'Iz‘(c(::’:,‘),)) 75 = a—f}w; =1.
Reason: « depends only on the path (not the speed) and this path is a unit circle.

6 z=cos®t has 2’ = —3cos? tsint and 2" = —3cos®t + 6 costsin® t;y = sin> ¢t has y’ = 3sin®tcost and

y" = ~3sin®t + 6sintcos® t. Then z'y" — y'z" = —9cos? t sin® t — 9sin? £ cos* ¢ = —9cos? tsin? ¢.
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12.4 Polar Coordinates and Planetary Motion (page 468)

Also (2')% + (y')? = 9cos* tsin t + 9sin* t cos® t = 9cos® tsin’ ¢t. The 2 power is 27 cos® ¢ sin® ¢t and

1

division leaves K = ———.
3costsint

sec?t — sec’t
(1+tan3 ¢)3/2 secdt

10 Problem 6 has v = 42 { + 2j=-3 cos? tsint i+ 3sin?tcost j = 3 costsint times a unit vector

8 z=t,y=lncosthas = 1 2" =0,y" = tant,y"” = sec?t. Then x = =cos t.

—cost i+sintj. Perpendlcula.r to T is the normal N =sint i+ cost j (also a unit vector).

12 2’ = ygcos @, 2" = 0,y = vpsina — gt,y"” = —g. Therefore |v|?> = vZ(cos? @ + sin® @) — 2vy(sin a) gt + ¢2t2
or [v|2 = vg — 2vq(sin a)gt + gZt2. Also x = I"”'l’_l” 2] = o 3**. (Note: k= "%‘5—‘1 at t=0.)

14 When x = 0 the path is a straight line. This happens when v and a are parallel. Then vxa=0.

16 In x = ( 4 +" ,)’, 77, doubling z and y multiplies « by 23472- = % (Less curvature for wider curve.) The
velocity has a factor 2 but the unit vectors T and N are unchanged.
18 Using equation (8), v x a = |v|T X (3?,—'.[' + &(%)2N) = «|v]>T x N because T x T = 0 and |v| is the

vxa
Vs -

20 v and |v| and a depend on the speed along the curve; T and s and x and N and B depend only on the path

same as E" Since |T x N| = 1 this gives [v x a| = k|[v|3 or k =

(the shape of the curve).
22 The parabola through the three points is y = z2 — 2z which has a constant second derivative %’{- = 2. The
circle through the three points has radius = 1 and &« = Ta llus = 1. These are the smallest possible (Proof?)
24 If v is perpendicular to a, then 4 #vV' V=v-at+a-v=0+0=0.50 v v = constant or [v|? = constant.
The path does not have to be a c1rcle, as long as the speed is constant. Example: helix as in Section 12.1.
26 B-T=0gives B'- T+ BT =0 and thus B'- T = 0 (since B- T' = B - N = 0 by construction).
Also B-B =1 gives B’ - B = 0. So B’ must be in the direction of N.
28 The curve (1,t,t%) has v = (0,1,2t). So T is a combination of j and k, and so are dT/dt and N. The
perpendicular direction B = T X N must be i.
30 The product rule for N=-T x B gives -‘%— T x dB dT XxB= Tx rN—;cN xB— ™B — «T.
82T =cosf i+sind j gives ‘—il =—sginf i+ cosf jso ]dTI =1. Then k=% |— |45 ||
Curvature is rate of change of slope of path.
84 (z,y,2) = (1,1,1) +¢(1,2,3) has v = (1,2,3) and % = &2 = 0. Then x = 0. So a = 0
This is uniform motion in a straight line.
36 2’ = ¢*(cost —sint),y’ = ef(sint+cost),z" = e’(cost —sint —sint — cost), y" = e*(sint +cost +cos t —sint).
Then (ﬂ)2 = (z')2 + (y')2 = ¢?*(cos?t — 2sintcost + sin® ¢ + sin® t + 2sintcost + cos? t) = 2e2t,
Thus 92 = \/2¢* and 4 E" = /2¢t. Also z'y" —y'z" = ¢2t[(cos t—sin t)(2 cost) — (sin t+cos t)(—2sin t)] = 2e2t,
So x = 72—:7 by equation (5). Equation (8) is a = v/2¢!T + v/2¢!N.
38 The spiral has R = (¢’ cost, e sint) and from Problem 36, a = (z”,y') = (—2sint %, 2 cost €f).
Since R - a = 0, the angle is 90°.

12.4 Polar Coordinates and Planetary Motion (page 468)

A central force points toward the origin. Then R x d?R/dt? = O because these vectors are parallel.
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12.4 Polar Coordinates and Planetary Motion (page 468)

Therefore R x dR/dt is a constant (called H).

In polar coordinates, the outward unit vector is u, = cosf i + sin 4 j. Rotated by 90° this becomes up =
—sin 0 i + cos 0 j. The position vector R is the distance r times ur. The velocity v = dR/dt is (dr/dt)u, +
(r d9/dt)u,. For steady motion around the circle r = 5 with § = 4t,v is —20 sin 4t i + 20 cos 4t j and [v] is
20 and a is —80 cos 4t i — 80 sin 4t j.

For motion under a circular force, r? times df/dt is constant. Dividing by 2 gives Kepler’s second law
dA/dt = %rzdo/dt = constant. The first law says that the orbit is an ellipse with the sun at a focus. The
polar equation for a conic section is 1/r = C — D cosf. Using F = ma we found ggo + q = C. So the path is a
conic section; it must be an ellipse because planets come around again. The properties of an ellipse lead to
the period T = 27a3/2/\/GM, which is Kepler’s third law.

1j,-Gi+j=u,—uy 8(2,-1);(L,2) 5v=23e*(u, +up) = 3¢3(cos 3 — sin 3)i + 3¢3(sin 3 + cos 3)j
7v— —20s8in 5t i+ 20cos 5t j = 20 T = 20 up;a = —100cos5¢ i — 100sin 5t j = 100 N = —100 u,
9rdf 1 20edl 0= 14(,24) 33 ¥ _ (004 radians/sec; h = r2% = 40,000

15 mR x a; torque 15 TPGM/4x)'/° 1T 4x%6*T?G 19 e e kg
23 Use Problem 15 25a+c= ﬁ,a —c= C_,+D, solve for C, D
27 Kepler measures area from focus (sun) 29 Line; z =1

81 The path of a quark is r?(A + Bcos? § — Bsin? §) = 1. Substitute z for r cos, y for r sin¥,
and z? + y? for r2 to find (A + B)z? + (A — B)y? = 1. This is an ellipse centered at the origin.
(We know A > B because A + B cos 26 must be positive in the original equation).

38 r=20-2t,0 = 2%, v = —2u, + (20 — 2t) 2Zus;a = (2t — 20)(2%)%u, — 4(2%)uy; [° |v|dt

2 The point (3,3) isat § = §. Sour = —\}—i(i+j) and up = —\}?(—i+j). If v =i+ j then v = v/2uy. This is
the velocity when % =+/2 and % = 0. (Better question: If R = 3i + 3j then

R=___ up Answerr= \/ig)
4r=1-cosf has 5 =3sinf% = 2sinf. Then v =2sin 0 ur + 2(1 — cos f)uy. The cardioid is covered as

6 goes from 0 to 21r. With % = 2 the time required is =.

6 The path r = 1,6 = sint goes along the unit circle from § = 0 to § = 1 radian, then backward to
f = —1 radian, and oscillates on this arc. The velocity from equation (5) is v = rifug = cost ug;
the acceleration is a = —cos®t uy —sin t up : part radial from turning, part tangential
from change of speed. v = 0 when cost = 0 (top and bottom of arc: § =1 or —1).

8 The distance rf around the circle is the integral of the speed 8¢ : thus 40 = 4¢2 and 0 = ¢2. The

circle is complete at t = v/2x. At that time v = r%u, = 4(2v/27)j and a = —4(8x)i + 4(2)j.

10 The line z =1 is r cos 6 = 1 or r = sec §. Integrating rn-d—o = sec? 0% = 2 gives tan# = 2t. The point
(1,1) at 6 = T is reached when tanf = 1 = 2¢; then t = %—

12 Since uy has constant length, its derivatives are perpendicular to itself. In fact "—"'- =0 and —d—l = uy.

14 R =re'® has ££ dz' e + 29 (0 %) + trd 2¢%0 +12r(92)2¢%. (Note repeat.ed term gives factor 2.)

The coefﬁcient of ¢* is %{- r(%)2. The coefficient of ie® is 24r 92 4 "Ef These are the ur
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12.4 Polar Coordinates and Planetary Motion {page 468)

and up components of a.

18 The period of a satellite above New York is 1 day = 86,400 seconds. Then 86,400 = ﬁasl 2
gives a = 4.2 - 107 meters = 420,000 km.

18 The period of the moon reveals the mass of the earth: 28 days -864003%<
gives M = 5.54 - 10?4 kg. Remember to change 380,000 km to meters.

20 (a) False: The paths are conics but they could be hyperbolas and possibly parabolas.

day

(b) True: A circle has r = constant and r? — = constant so % = constant.

() False The central force might not be proportional to ;15-
22T= (9000)3/ 2 ~ .268 seconds.
24 1= C’r--Dz is 14+ Dz = Cr or 1+ 2Dx + D2x32 —c"(x +y2) Then (C? — D?)z? + C%y? — 2Dz = 1.
268ubst1tutez=—c,y=——andusec = g2 — b3, Then-;+”-r —lr— —+r——1

28 If the force is F = -ma(r)u,, the left side of equation (11) becomes —a(r). Gravity has a(r) = %%4

80 Multiply geo + ¢ = by ge and integrate: 2q2 + 2q2 J ’!—do = 1 >3 +C. Substituting u = q>
and uo-2qqa (orq2 = 31" ) gives -8{;+ t=Z14Corul= -4u + 8uC — 4. Integrate
VW dé which is mslde the front cover to find § + ¢ = Lsin™! %

ci-1
Then % = u=C+ VC? ~ 1sin(20 +¢).
32T = \/%"ﬁ(lﬁ -10°)3/2 a5 71 years. So the comet will return in the year 1986 + 71 = 2057.

84 First derivative: 4 = & (52— ) = (gf,;‘jo%‘% —Dsind r2% = _Dhsing.
Next derivative: i" = —Dhcos§% = :-ﬂ'-g-sﬂ But C—Dcosf = L s0o —Dcosf = (1 - C).
The acceleration terms ‘f‘?'- ~ r(%)? combine into (1 — C)2; A —’- = —C"'—:. Conclusion by Newton:

The elliptical orbit r = =5 -5 requires acceleratlon = @%-‘1‘—‘ the inverse square law.
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