10.1 The Geometric Series (page 373)

CHAPTER 10 INFINITE SERIES

10.1 The Geometric Series (page 373)

The geometric series 1+ z+z2+ - - - adds up to 1/(1 — x). It converges provided |z| < 1. The sum of n terms
is (1 —x™)/(1 —x). The derivatives of the series match the derivatives of 1/(1 — z) at the point z = 0, where
the nth derivative is n! The decimal 1.111... is the geometric series at z = .1 and equals the fraction 10/9. The
decimal .666. .. multiplies this by .6. The decimal .999... is the same as 1.

The derivative of the geometric series is 1/(1 — x)2 = 1+ 2x + 8x2 + - - . This also comes from squaring the
geometric series. By choosing z = .01, the decimal 1.02030405 is close to (100/99)2. The differential equation
dy/dz = y? is solved by the geometric series, going term by term starting from y(0) = 1.

The integral of the geometric series is —In(1 — x) =x +X%/2 + ---. At z = 1 this becomes the harmonic
series, which diverges. At z = % we find In2 = % + (%)2/2 + (%)3/3 + . The change from z to —z produces
the series 1/(1+z) =1-x+x2 —x3+--- and In(1+ z) =x —x2/2+x3/3. ...

In the geometric series, changing to z? or —z2 gives 1/(1 — 22) = 1+x2 +x% + ... and 1/(1 + 2?) =

1-x24+x% ..., Integrating the last one yields =z — %za + ézs .- = tan~Ix. The a.ngle whose tangent is
z=1listan"!1= l——%+ % — ++-. Then substituting z = 1 gives the series # = 4(1 — §+ E_"')-
1 Subtraction leaves G —2G =1or G = {1 31;%,100.34 52-1+3-2z2+4-322+ - = 72

7 .142857 repeats because the next step divides 7 into 1 again
9 If ¢ (prime, not 2 or 5) divides 10V — 10M then it divides 10N —M™ — 1 11 This decimal does not repeat

3 —
13 8,123 35 = et 17 25 19 {8 21 L5 23 tan"!(tanz) =z
25 (1+z+22+2° )(l—a:+a:2—z3 )—1+a:2+:c4+~~
1 — 20 N 1 — 80 1_
272(.1234...)is 2 {5 - 7o xy7 = 13 1 — -0123.. -“mensEy =81 293ty =1

81 -In(1-.1)=-In9 381lmil 35 (n+1)! 3Ty= 5
39 All products like a;b, are missed; (1+1)(1+1)#1+1 41 Take z =1 in (13): In 3 = 1.0986
43 In 3 seconds the ball goes 78 feet 45 tan z = %; (18) is slower with z = 2

2 Distances down and up: 10+ 6 +6+6-2+6-2 + ... = 10+ 2(6) ;23 = 40 feet
5
41+(1—z)+(1-—x)2+---=1_(1_3) =;;mtegratmngiveslnx::c——“—;ﬂ:—-h;’)—s—---+0andat

2 3
z =1 we find C = —1. Therefore 1nx=—[(1—x)+i%)—+ 1-x +-+-]. At z =0 this is —c0 = —o0.

6 Multiplying (1 — z+ 2% —---) times (1+ z+ 2% + - --) term by term, the odd powers disappear and one of

each even power survives. The product is 1+ z? + z* + - - which is 15 = 3 11;, the product of the

two series.
8 11—3 = .076923076923 - - - so that ¢ = 76923 and N = 6 and n = 6 (repeat after 6 digits starting immediately).
10 The decimal .010010001- - - is not repeating because the number of zeros increases. So it ca.nnot be a fraction.

12 The number 1.065065- - - equals 1 + 10(5)0 + Tom" + - whichis 1 + 1ooo(ﬁ__') =1+ 85 999 19%694'

14 (1+ 5+ 3+ )1+ +ms+ ) =1+ Iﬁ + Iﬁﬁ + 1—0‘1'075 + - - - Expressed in fractions this is (12)% = 122,
1

1 1
161_2z+(21)2—"'=f—7}-2—z)= n
18 2z — 1z° + 3 ...=§_(§)2+(%)3__”‘=1_3?= fx-
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10.2 Convergence Tests: Positive Series (page 380)

20 z — 222 +3z% — - .- = z(1 — 22+ 322 — - - \) = [change z to —z in equation (5)] = (—1—4—?‘;‘72-

22 2(1+ gz + ey + ) = olim) = a(EiE) = 1+ x

24 e® + e+ 4. =% (1+€° +e"’z )*ex(——zx)

26 f(1+:1:'"+.'s"-f----)cl:o:=:4:+%+’5 +- =%ln1—f;byequation (13). This is [ ;25dz which is

also tanh~1x ( + C).
28 (1+z+22)(1+z+2?)(1+z+23)=(1+22+32%+ - )(1+z+2%) =1+8x+6
80.1+.02+.003+ --- = & +2(%)2+3(L)% + - = by equation (5) = 1—10(1_1%), =
32 55— 2(H)P+ 1(110)3 — -+ = by equation (10b) =In (1+ ) =In 1.1.
34 1 -3 +E3)2--= \/5[\/— (\/—)3 (\/—)5 -:] = by equation (18) = v/3 tan™? % = \/5%
36 ¥ (0) = [y(0)]? = b2, ¥'(0) = 2y(0)y’(0) = 2b3; y"(0) = (from second derivative of y = ¥) =
2y(0)y"(0) + 24'(0)y’ (0) = 8b4. Then y(z) = b + b%z + 2b3(%') + 6b4(%) +-=
b(1+ bz + 6222 + 5323 + ---) which is y(x) =

2, ..
1.

S

a0

88 The mean value is » =  +2(3)(3) + 3(2)%(% )+ -~= (by equation (5) with z = 2) = %H:I—W =4.
Why should you have to wait for the fourth deal to get the best hand??
40 Note: The equations referred to should be (10) and (13). Choose z = 2 in (10a): 2 + Z(2)?+ ... = -In 1.

In equation (13) choose z = 1 so that 12 = 3. Then 2(3 + 1(3)® + £(£)° + ---) = In3. This
converges faster because of the factor (%)2 between successive terms, compared to % in the first series.
The series are equal because —In  =In3.
42 Equation (18) gives tan™! L & L — o4 L ~ 10000 —.00333 + .00002 = .09669 (which is .0967 to four
decimal places)
44 The series 1 — + 3 — 3 + -~ adds to .693. The fact that the first digit is 6 is settled when the sum stays
below .7, at about the term —+-.,11 (other answers are equally acceptable!). The 50th power of % equals
the 100th power of ;. Also & = 5f% when a” =2 or nlna = 100In2 orn = 100{2—3.
46 Equation (20) is v = 4(t,a.n"1 sHtan ) ma(3 -3+ 3 -3 ()T + ) - H(A)M
113+ 1(3)° - 2(3)") = 2 - .16667 + .02500 — .00446 + .00087 — .00018 + 1.33333 — .04938 + .00329
—.00026 = 3.1415% = 8.142. Note: 75(3)'® and § (§) will increase the total toward 3.1416.
48 ¥ ¢~ = (take z = ¢’ in equation (10)) = —In(1 — el).

10.2 Convergence Tests: Positive Series (page 380)

The convergence of a; + az + - - -is decided by the partial sums s, = ay +--- + an. If the s, approach s,
then }°a, = 8. For the geometric series 1+ z + --- the partial sums are s, = (1 —x®)/(1 —x). In that case
8n — 1/(1—z) if and only if |x| < 1. In all cases the limit s, — s requires that a,, — 0. But the harmonic series
an = 1/n shows that we can have a, — 0 and still the series diverges.

The comparison test says that if 0 < a,, < b, then ) ap converges if ) bp converges. In case a decreas-
ing y(z) agrees with a, at z = n, we can apply the integral test. The sum 3 a, converges if and only if
ffo y(x)dx converges. By this test the p-series 3 1/nP converges if and only if p is greater than 1. For the
harmonic series (p = 1),8, = 1+ --- + 1/n is near the integral f(n) = In n.

The ratio test applies when a,11/a, — L. There is convergence if |L| < 1, divergence if |L| > 1, and no
decision if L =1 or — 1. The same is true for the root test, when (a,)!/™ — L. For a geometric-p-series
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10.2 Convergence Tests: Positive Series (page 380)

combination a,, = z"/nP, the ratio a,41/a, equals x(n + 1)P/nP. Its limit is L = x so there is convergence if
|x] < 1. For the exponential e* = - 2" /n! the limiting ratio a,+1/a, or z/(n + 1) is L = 0. This series always
converges because n! grows faster than any z" or n?.

There is no sharp line between convergence and divergence. But if ) b, converges and a,, /b,, approaches
L, it follows from the limit comparison test that ) a,, also converges.

13+%+- - issmaller than1+ 3+
8a,=8,— 81 = ;51_—n,s= 1;a, = 4,8 = 00ja, = lnnz_"_‘1 lnﬂl;—l)- =lnn"—_,l,s=ln2
& No decision on Eb 7 Diverges: ;35(1+3+--) 9% '1"65%075 converges: ) -5 is larger
11 Converges: 3 ;5 is larger 13 Diverges: ) 51 is smaller 16 Diverges: Y ;- is smaller
17 Converges: ) 7 is larger 19 Converges: ) 3% islarger 21 L=0 28L=0 25 L=1
27 root (2=1)* - L=1 29 s =1 (only survivor) 81 If y decreases, )3 y(i) < [ y(z)dz < TPt y(d)
88y Ce "< [Petdz= 1 1+L+---=2% 35 Converges faster than [ -2 P oy
87 Diverges because [° 592 = LIn(z? +1)|3° =co 89 Diverges because [, z°~"dz = ,'_,:.:11 I8° = o0
41 Converges (geometric) because [2(g)Pdz < o0 43 (b) f; 1 2 > (base 1) (height - 1
45 After adding we have 1+ 3 + sent % (close to In 2n); thus ongma]]y closetoln2n—In n=1In 27" =In2
47 II::O:—‘: = 1(1)_0—m = 009 49 Comparisontest sina,. < @p; if @, = #n then sina, = 0 but )} a, = co
51 a, =n"5/2 53 a, =27 55 Ratios are 1,1,1,1, .- (no limit L); (F6)1/3* = -\/-%; yes
57 Root test -1~ - L =0 59 Root test L = %o 61 Terms don’t approach zero: Diverge

Inn

68 Diverge (compare ) ;) 65 Root test L = % 67 Beyond some point %: <lora, <b,

2 The series % + TgE + 1050 + - - ~ converges because it is below the comparison series 1% + I%O' + 1'090'6 o=
999...=1,
4(a) 1+ 5+3+ -+ ghr =500
(J1+2+---+n= %n(n+l)
8 (a) If b, + cn < a,, (all positive) and Y a,, converges then by comparison Y by and ¥ cp converge.
(b) If an < b + ¢p (all positive) and } a,, diverges then an or ch (or both) must diverge.
8 135 + 165 + 1ig + - - diverges by comparison with =1~ 155+ 395 + 355 300 + -+ -in Problem 7.
10 337 + 125 + 137 ( + Togenv) converges by comparison with 3 J;. (Just. drop the 100.)
12 Zj@ diverges by comparison with the smaller series m which diverges. Check that
n2 + 10 is less than n + 10.
14 ) ;}% converges because it is less than ) ‘n@ =Y =45 which converges.
16 Y ;% cos(~) converges because it is below 3 ;.
18 ¥ sin?(1) converges because sin L < 1 gives sin?(2) < 4 and ¥ & converges.
20 ), ﬁ converges because :,L:- — 0, which means that eventually n® < %c" and the series compares with

(b)lni+lm2+.. ~+In 2 =In(3)(3) - n+1)—ln'—I

P }1— which converges.

22 The limit of n_-H'F /&= TnL-:lF =L = 1. So the ratio test (and root test) give no decision.

e-1
24 The terms are (271)" = (1— 1)® — ¢~ 50 the ratio approaches L = e—_I = 1. (Divergent series because its

terms don’t approach zero.)

26 The ratios (','::)' ;,—,',";Jr approach L = 0.
28 The ratios ”_'Hl.' {:—ﬂ-}(nﬂ = (24)~" approach L = e~ 1.
80 (a) Put (1 - —)+(—— §) + - =1 together with (3 — 1)+ (1 — 1) +..~=1 to obtain s = 1+% = —g—

P)lni+lmd+ -+l =(})3) - (3= lnu“approachesan—-—oo(nosums).
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10.3 Convergence Tests: All Series (page 384)

82 1+ 1+ + 31 is the area of rectangles outside "+1 s = [iIn(2z - 1)]"+1 2In(2n +1).
The recta.ngular area is less than 1 + fln 2:" =143 1 3In(2n —1). Similarly 1+ 2 +---+ L is
larger tha.n f"+1 & =[-zLt = 'n—+17" The sum is smaller than 1 + f" de=2_.1,

34 The sum X + 3 —,— + --- is less than 1 + fl ge~%dz = 1 4+ [—ze7% — ¢7%]® = 2. (Note that ze~* decreases

for z > 1, 80 % is less than the 1ntegra.l from 1 to 2.) The exact sum is in equation (6) of

Section 10.1: £+ 222 +--- = = zz)z = (1_.}1)2 =

e
(e-DZ’
36 ) 5. diverges by comparison with 7 32 = $In(3z + 5)J§° = 0.
38 ) Inn diverges by comparison with [;° 22dz = [L(Inz)?]3° = co. (!22 decreases for z > ¢ and these later
terms decide divergence. Another comparison is with 3 2.)
40 37° wllam) (mian) —=wy diverges by comparison with z—(_ﬁlnzd(fn Tz =In(Inln z)|$° = co.
42 3°7° -r converges by compa.nson with [ 28 = — L= |° = L, .
44 The partlal sum 1+ % +---+ 1 is near .577 + Inn. This exceeds 7 when Inn > 6.423 or n > %423 > 615.
The sum exceeds 10 when Inn>09. 423 orn > %423 > 12369.
46 The first term is 2ln2 After that nhm < n—l ﬁ; The sum from 3 to n is below f” z‘l’:z =In(lnn) -
In(ln 2). By page 377 the computer has not reached, n = 3.2 - 10!° in a million years. So the sum has not
reached ;i3 + In(In3.2-10'°)— In(ln2) < 5.

48 If Y a,, converges then all a, < 1 beyond some point n = N. Therefore a2 < a,, beyond this point and 3 a2

converges by comparison with ) ap,.

50 The limit comparison test says that 3 - L diverges if )
diverges because [ %2 =In(ln z)]°° = oo.

52 a, = y/n(3)" has §» —0,2% — co.

54 ap, = & has %:=;—:—>0but o= (5)" — oo

56 Suppose %2+l is between L — € and L + ¢ for n > N. This is true for all n if we cha.nge the first terms of the
sequence to a, = ay L~V (n = 0,1,---, N). Then the products (2)(22) - --(;25-) = %= are between (L—¢)"
and (L + €)". Take the nth root: a,./ is between ag/"(L — ¢) and a} i7 "(L + €). For sma.ll ¢ and large n
this nth root is arbitrarily close to L.

58 }, - converges by comparison with }_ % (note Inn > 2 beyond the 8th term). (Also ) m‘rﬁ
converges!)

60 In 10" = nln 10 so the sum is z45 3~ 1 = oo (harmonic series diverges)

diverges. The integral test says that )

1
ninn nlnu

62 n~1/" approaches 1 so the series cannot converge
64 2 lnn giverges by comparison with s L if p < 1. For p > 1 the terms l“" are eventually smaller than
wmh 1< P <p.So ) B2 converges if p > 1.

66 E W converges if ¢ > 0 by the ratio test: u(n_,_—l))ﬁ;/mr = (—t—)pm — L=0. 68 No.

10.3 Convergence Tests: All Series (page 384)

The series Y a,, is absolutely convergent if the series Y |an| is convergent. Then the original series ) ay, is
also convergent. But the series ) a,. can converge without converging absolutely. That is called conditional

convergence, and the series 1 — -% + g — - is an example.

For alternating series, the sign of each a,4+1 is opposite to the sign of a,. With the extra conditions
that |ap, 1| < [an| and an — O, the series converges (at least conditionally). The partial sums s, s3,--- are
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10.3 Convergence Tests: All Series (page 384)

decreasing and the partial sums sg, 34, - - are increasing. The difference between s,, and s,,_; is ap. Therefore
the two series converge to the same number s. An alternating series that converges absolutely [conditionally]
(not at all) is 3(—1)2+1/n2[3(-1)0+1 /n](Z(-1)2+1). With absolute [conditional| convergence a reordering
cannot [can] change the sum.

1 Conditionally not absolutely 8 Absolutely 5 Conditionally not absolutely 7 No convergence
9 Absolutely 11 No convergence 138 By comparison with )’ |a,]

15 Even sums % + i— + % + - - - diverge; a,,’s are not decreasing 17 (b) If a,, > O then s, is too large so s — s, < 0
19s=1- i—; below by less than é

21 Subtract 2(z5 + g7+ ) =3(HF+H +-) = % from positive series to get alternating series

28 Text proves: If ) |a,| converges so does ) an

25 New series = (3) — 1+ (3) -1 - =21(1-2+3-3--) 27 2In2:addIn 2 series to 1 (In 2 series)

29 Terms alternate and decrease to gzero; partial sums are 1+ -;— + -+ % —Inn —«

31 .54037 383 Hint + comparison test 35 Partial sums a,, — ap; sum —agp if a,, —» 0

37 T:L{lTl{ = 3 but product is not 1+ §+

89 Write z to base 2, as in 1.0010 which keeps 1 + % and deletes %, %, ‘e

41 1+ 5 + - adds to 25 =1 and can’t cancel {

48 2l — cot 1 (trig identity) = tan (3 —1);s =} % = —log(1 — ¢*) by 10a in Section 10.1;

take imaginary part

n—1
2y t-l;‘)-_‘-_—a— : converges conditionally (passes alternating series test) but not absolutely: ) ﬁ diverges
4 3 27 converges (ratio test: %atl = 727 — 0) so there is absolute convergence.

6 3_(—1)"*!sin® n diverges (terms don’t approach zero)
8 E(-—l)"“% : no absolute convergence because sinn > 1 half of the time and Y - diverges.
The terms alternate in sign but do not decrease steadily; still I believe there is conditional convergence.
10 3°(~1)"*+12!/" diverges (terms don’t approach zero)
12 n!/" decreases steadily to 1 so the alternating test is passed: 3 (—1)"*!(1—n!/") converges conditionally.
But n!/™ > e}/ > (1+ 1) so that |1 — n!/"| exceeds L and there is no absolute convergence.
14 Yes, the sum ) (— %) converges absolutely.

16 The terms alternate in sign but do not decrease to zero. The positive terms %, 4,';, 1—61-, -+ - approach % and so
does the sequence %, g-, 17—3, e
18 The term after ss = 1 — % + % - % + % = % is ag = —é. Then later terms bring the sum upward. So the
= i 47 1 _ 37 47
sum s = In 2 is between 55 — 5 = 55 and g5-

20 The difference between s and s;¢0 is less than Wllf’ the next term in the series (because after that term
comes —i%,- and the sums stay between s1g0 and s101).

22 The error 1—011—, - 1—012—, + - -- in the alternating series is smaller than the error in the positive series.

24 The series a;+a2—as+a4+as—ag+- - - is sure to converge (conditionally) if 0 < asp43 < Gsn+1+083n+2 < G3n
for every n. Then it passes the alternating series test when each pair of positive terms is combined.
(The series could converge without passing this particular test.)

26 The series 1 — %—i— % - i— + % — % +---=1n2 is in Section 10.1. Take half of every term and also insert zeros:
0+ % -0- i—+0+%— cee= %an. Add the two series term by term: 1+ 0+ % - %-{— :,1;+0+ cee =
%ln 2, as the problem requires. This is allowed because the partial sums s], and s} of the first two series
add to the partial sums s,, of the third series. Notice something strange: The third series can also be
produced from the first series only, by rearranging (two positive terms between negative terms). With
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10.4 The Taylor Series for ¢*, sin x and cos x {page 390)

conditional convergence any sum is possible

28 Shorter answer than expected: 1+ 3 L4 £~ — - -14- - % comes from rearranging 1 — + 11 i % - - . Continue
this way, six terms at a time. The partla.l sums 3sg, 812, -~ ~ are not changed and stlll a.pproa,ch In2.
The partial sums in between also approach In 2 because the six terms in each group approach zero.

30 Apply the alternating test. The terms f(n ) ":’dz are +,—,+, —, - - - (because sin z alternates).

The terms are decreasing and approach zero (because of ). Why is the sum §?
"5 ’r?u-f-l

32 We know that sinnt =0, or 7 — ’%— + 156 — - - ~=0. If we stop just before the term im, the error is less

than 1078 (or 11078 to be safe) if ﬁ;’.—t:l—‘ < 21078 which is true for n = 10.

84 The series can start at n = 1or n =0 (we choose n = 0 to have geometric series): Y a2 =1+ 1+ L +.--=
1—_‘_}-=§and2bﬁ=1+%+§l{+---=l—_l—{=%andZa,.b,,=1+%+31—6+--~= ﬁ:g. Check
the Schwars inequality: (£)% < (§)(2) or 6 -6 -3 -8 < 5-5-4-9 or 864 < 1125.

86 If 3 a, is conditionally but not absolutely convergent, take positive terms until the sum exceeds 10. Then
take one negative term. Then positive terms until the sum exceeds 20. Then one negative term, and so on.
The partial sums approach +oco (because the single negative terms go to zero, otherwise no conditional
convergence in the first place)

88 (a) False (1 — 1+ 1—1+ ---does not converge) (b) False (same example) (c) True (d) True
(a1 + -+ an added to by + - -- + by equals (a; + 1) + -~ + (an + bn); let N — oo;

then Y- an + Y bn = 3 (an + ba)).

40 For s = —1 choose all minus signs: —% - % —.--= —1. For s = 0 choose one plus sign and then all minus:
1-1-1-...=0. For s =} choose alternating signs: 4 — 1+ 31— ...= 1_:’ =1,

42 The sma.llest positive number must include +3; then choose all minus signs: 3 — 1 - L — .. =1 - i—é}- =
3-Li= (Thls is for the Cantor set centered at sero. Add 1 to obtain the number 2 in the usual
Cantor set between 0 and 1.) With alternating signs the sum : — 1 + L — .= 1_: =1

44 If ) a, converges then its terms approach zero: in partxcula.r |a,,| < C’ for some number C. Then Y anz"
converges absolutely by comparison with }_ Cl|z|" = 1_—|?['

10.4 The Taylor Series for e°, sin x and cos x (page 390)

The Taylor series is chosen to match f(z) and all its derivatives at the basepoint. Around z = 0 the series
begins with f(0) + £'(0)z + %f " (0)z2. The coefficient of z" is £(®)(0)/n!. For f(z) = ¢ this series is 3> x®/n!.
For f(z) = cos = the series is 1 —x2 /2! + x4 /4! — .- .. For f(z) = sin = the series is x — x3/81 + ... If the signs
were positive in those series, the functions would be cosh z and sinh x. Addition gives cosh z + sinh z = eX.

In the Taylor series for f(z) around z = a, the coefficient of (z — a)" is b, = f (D) (a)/n!. Then b,(z — a)*
has the same derivatives as f at the basepoint. In the example f(z) = z2?, the Ta.ylor coefficients are
bo = a2,b, = 2a,b; = 1. The series by + by (z — a) + bz(z — a)? agrees with the ongma.l x2. The series for ¢*
around z = @ has b, = e®/n!. Then the Taylor series reproduces the identity e* = (e2)(eX~2).

We define e”,sin z,cos z, and also ¢® by their series. The derivative d/dz(1+z+ 122 +---) =14z 4 -~
translates to d/dx(e*) = e*. The derivative of 1 — 122 + ----is —x +x3/8! — .--. Using i2 = —1 the series
14140 + 3(i6)% + - -- splits into ¢*® = cos § +i sin 4. Its square gives ¢? = cos 20 + i sin 26. Its reciprocal is

e = cos § — i sin 4. Multiplying by r gives re?’ = r cos f +1ir sin 6, which connects the polar and rectangular
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10.4 The Taylor Series for ¢*, sin x and cos x (page 390)

forms of a complex number. The logarithm of ¢* is i4.

11+2z+13§,):+-~-;derivativee 2";1+2+§:+~ - 8 Derivatives t™;1+ 1z + ---

5 Derivatives 2"n!; 1 + 2z + 422 + --- 7 Denvatwes —(n—-1)-z— % - ’3—3 —---

Qy=2-¢" —z—;—:—-u 11y= z——6—+ -=sin z 18 y = z¢®* = z + z° +%+---
151+2:z+zz4+4(a: 1)+(z-—-1)2 17 —(z - 1)°® 191-(z-1)+(z-1)*-

21 (z-1) - L5 L G (14 (z-1)) 2l = l(1-(z-1)+ BN )
26 2+ 27 + 22° 27 L - ;:+.,;o 20z-%+& S11+z2+% 8814+z-2%
35 oo slope; 1+ 3(z ~ 1) Tz-%+%  89z+Z +22 L114z+%  43140z—22
45 cosﬂ———%——'i sinf = ¢ .z: = 47 99th powers —1, —, e3™/4, —§

49 ¢=**/3 and —1; sum sero, product —1 68 :7,15 +2m 55 2¢°

2 8in2z =2z — ‘2—’)— 22) — ... 50 that (sin2z)" = —23 + 22 25 2 —...=—8 at z =0. This agrees with
the chain rule for (sin 2.1;)”' Also sin 27 = 2% — (%',)— 133:—,)- - ---=0.

4f=pf= zﬁ-},p, = ey "' = ;j’;' .Setz=0:f=01f =—1,f"=2,f"=-3,--.
The Taylor series is 1i- =1—z + 32? — zs + - =Y p-o(-1)2x".

6 f=coshz, f' = smh:c f” = cosh z, - --. Evaluate atz=0:f=1,f=0,f"=1,---. The Taylor series is

x2 4
cosh z=1 + + 4,
=In(1+ z), f = T4 f Wz)_” - (one step behind Problem 4). Evaluate at z=0: f =0, f' =1,

2 3 4
f” = —1, f" = 2, ~--. The Taylor series is In(1+ z) =z — 2, + 45 2" =x— 32— + ’—‘s— X+
10y =cy+s,¥" =cy,y" = cy”, -~-. With yp = 0 this gives yj = s, yo =cs, y{," = ¢23,---. The Ta.ylor series
isy(z)=3z+cs%+cza§:-+---= %[cz+c2%+c3§+---]= B(eSX —1).

12y = yyields y" = ¢ =y and y"” = y--~. Then y and all its derivatives equal 1 at £ = 3. The Taylor series
isy(z)=1+(z—-3)+ %(z-—3)2+~--=ex‘3.
14 At z = 0 the equation gives y" =y =1, y"" =y =0 and ¥ = y' = y = 1 (even derivatives equal 1,

odd derivatives equal 0). The Taylor series is y(z) =1+ %:— + % + o= %(ex + e X) = cosh x.
16 2% and its derivatives at z = a are a3, 342,64, 6,0, ---. The Taylor series is a3 + 8a%(x — a)+

%(x —a)? 4 %(x — 8)% which agrees with z3.
2
18 At z = 2« the cosine and its derivatives are 1,0, —1,0, 1, ---. The Taylor series is cos x =1 — &:22'_10__*_
4 !
(xX-2m" _ .. Atz =0 the function cos(z — 2x) and its derivatives again equal 1,0,—1,0,1, ~--.

4
Now the Taylor series is cos(x 2r)=1- ’—% + ’{f— — e,

20 37 has derivatives (2 ALl (2 z),, - 63)., ~. At z =1 those equal 1,1,2,6,--- and the series is
ﬁ-—1+(x—1)+(x )2+ (x-1)3 4+

22 At z = 1 the function z* and its derivatives equal 1,4,12,24,0,0,---. The Taylor series has five nonzero
terms: x4 =1+ 4(x—1)+ 32 (x-1)2 + Z(x-1)3 + Fx - 1.

24 The function ¢2* has derivatives 2¢2%, 4¢3, 8¢2%, ... . Evaluating at z = 1 gives €2, 2¢2, 4¢2, 8¢2, - -, The
2 b ]
Taylor series is €2X = e® + 2e%(x — 1) + 4e21%,l)-— + SeZQ‘"T})— + v (which is €2 times ¢2(2-1)),
26 cos\/z=1- h@): + L‘%ﬁ —e=1-2+ i:.—: -++. (Note that sin /z would not succeed; the terms
vz, (Vz)? ), are not acceptable in a Tay]or series. The function has no derivative at z =10.)
28 sinz _ 3"‘—5 +"_un _1_x2+ x4
z z 6 120 ~ 6 10
80 sinz? = 7% — L)— 3_x" 1+ X

R I

82 j% = czlnb — 1+x1nb+ E(xlnb)z +
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_J —=z forz<0 dz| _ ] -1 forz<0 . . .
34 |z = { 4tz forz>0 5° that = = 41 forz>0 ° When z is negative and n is not a whole number,

z" is a complex number. But still % = n|z|* "1 (1) = n|z|* (™) = nzn L

362" =¢""2=1+zIn2+ 4(zIn2)® + 3 (zIn2)3 +--- (OK to compute derivatives).

38 Compute sin™* z and its derivatives at 2= 0:sin" 'z =0, == =1, z(1 - 2%~ 3/2 = o,
(1—22)73/2 4 322(1 — 22)~5/2 = 1,92(1 — 2?)~5/2 — 152%(1 — 2%)~"/2 = 0,9(1 — 2?)~%/2 + ... = 9.
The Taylor series for sin™! z starts with 0 +x + 0 + %xa +0+ mxs.

40 Compute In(cos z) and its derivatives at z=0:In1=0,—322 — _tanz = 0,—sec?z = —1,~2sec? z tanz
= 0, —2sec* z — 4 sec? ztanZ z = —2. The Taylor series for In{cos z) starts with —%xz +0- %x4.

42 Compute tanh™! z (or 1 In(}£Z) : Section 6.7) and its derivatives at z = 0:tanh™10 =10, 25 =1,
2z(1 — z%)72% = 0,2(1 — 22) 2 + 42%(1 — z%)~2 = 2. The series for tanh™! z starts with x + 0 + %x3.

2 z and its derivatives at z = 0 :sec20 = 1,2sec? ztanz = 0,2 sec* z + 2 sec?z tan?z = 2.

44 Compute sec
The Taylor series for sec z starts with 1+ 0z + 22% =1 +x2.

46 (%)% = %% equals cos 26 +1sin 20 so neither of the proposed answers is correct.

48 (a) e?™/3 = cos X T 4 isin 2F = —-- + l3£ (b) ( 2’"/3)3 = e8™/3 = 2™ = 1 (c) (-3 +‘L“£)(—-— 32§) =
:- i‘@ -3=_2 —‘C Multxply by a.nother (-3 + z‘C) to get + —1%3 = 1.
50 (2e"'/3)2 4e2"l/3 and also (14 v/31)(1+v31) = 1 +24/3i — 3= —2 + 24/3i; (467/4)2 = 16el"/2
and also (2v/2 +12v/2)(2V/2 +12v/2) = 8 + 16i — 8 = 16i.
52 Write (¢**)(e~**) = ¢!(*~*) in rectangular form: (cos s+ sin s)(cost —1sint) = cos(s —t) +%sin(s —t). Collect
real and imaginary parts: cos(s —t) = cosscos t + sin s s8in t and sin(s — t) = sins cos t — cos s sin t.
54 If e = £ then the number N = p! I_(-f+5 ,%)] is an integer, because all denominators
go evenly into the p! term. But in parentheses is an alternating and decreasing series approaching

e~! = 1, The error is less than the last term x% so |N| < 1. The only possible integer N is N = 0 which

is not correct. The contradiction means that e = fll was not true: e is not a fraction.

10.5 Power Series (page 395)

If |z| < |X] and ) a, X" converges, then the series ) a,z" also converges. There is convergence in a
symmetric interval around the origin. For ) (2z)" the convergence radius is r = % For )~ z™/n! the radius
is r = 0o. For ) (z — 3)" there is convergence for |z — 3| < 1. Then z is between 2 and 4.

Starting with f(z), its Taylor series ¥ a,z™ has a, = f(®)(0)/n!. With basepoint a, the coefficient of (z—a)" is
£(B)(a) /n!. The error after the z" term is called the remainder R, (z). It is equal to f@+1)(c)(x — a)2+1/(n + 1)!
where the unknown point ¢ is between a and x. Thus the error is controlled by the (n + 1)st derivative.

The circle of convergence reaches out to the first point where f(z) fails. For f = 4/(2 — z), that point is
z = 2. Around the basepoint a = 5, the convergence radius would be r = 3. For sin z and cos z the radius is

r = o0.

The series for v/1 + z is the binomial series with p = 1. Its coefficients are a, = (%—)(-———)( ) -+ /nl. Its
convergence radius is 1. Its square is the very short series 1 + z.

11+4z+(42)2+~.‘;r=i—;z:% 3e(l—z+‘;—:_.);’-=oo
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5ln°+m(1+f)=1+%—%(%)2+---;r=c;z=—c
7|5 <tor(-1,3);5% 9lz—a|<1—In(1-(z-a))

—_{l=- 1.-.
111+2+% +---;addtolatz=0 18 ay,as, - are all sero 15 1=(=4at) |

N =

17 f8)(c) = cosc < 1; alternating terms might not decrease (as required)
n41l z™ 1
19 f= 71, |Ra| < mfm Ra=2(1-¢)=1-}
21 f(n+1)(z) = IIT%“_‘“’IR"I < -(—_%;—;—,(n+1) ~Owhenz=1and1-c> 3
28 R; = f(3) - f(a) — f'(a)(z — a) ~ 3f"(a)(z — a)® s0 Ry = Ry = R =0 at z = a, B3’ = f";
Generalised Mean Value Theorem in 3.8 gives a <c<cg<¢; <=z
25 1+ 122+ 3(z?)? 27 (-1)%(-1)"(n+1)
29 (a) one friend k times, the other n — k times, 0< k<m;21 33 (16 — 1)1/4 ~ 1.968
85 (1+.0)" =1(LY)(1) + B3 (12 6 11105 8T1+ L+ 52 r=5  4lz+2%+ 3254 Bg

4322 — Lot + 228  461+5+3% 432 47 2127 49 -1-1=-1 s51r=1r=%-1

2 In the geometric series 71— =1+ z+ 22+ change z to 422 P o 4 T =1+ 4x? +16x% + - -. Convergence
fails when 412 reaches l(thus x= % orx= ———) The radius of convergence isr = %

4 tanz ha.s derivatives sec? z,2 sec® ztanz,2 sec? z+4sec? ztan® z. At £ = O the series is 1+ 0z + %x2+0z3 =
1 +x2. The function tanz = :io"': is infinite when cosg=0,atx= 5 andx= ——%. Then r = -;—

6 In the geometric series replace z by —4z2. Then T “, =1- sz + 16x4 -++. Convergence fails when |4z?|
reaches 1. The function blows up when 422 = —1, at x = f and x = —-2 The radius of convergence is
=3

. e _n 1 . AT T 1 .
8 The derivative of 3 (z — a)" = ;=5 is X n(z — a) Txra?" The first series converges between

x=a~—1and x = a + 1. The derivative has the same interval of convergence. The series do not
converge (the terms don’t approach sero) at the endpoints z=a—1land z=a+ 1.

10 (z—2x) — (%): begins the Taylor series for sin(z — 27) = sin z, with basepoint a = 2x. The series converges
for all z (thus r = oo) because of the factorials 3!, 5!, 7!, - --.

12z =z(1+z+--+ 2+ )=z+22+---+ ’"H + ---. Integrate the function and its series from 0 to 1:

fo ze®dz = [ze® —e"]0=1 fo(:'c+a: +- +z::l ”')d“=%+§'+"'+ﬁv—(x}_+2§+' N
14 (a) Combme z+zt+z’+- =1EZsand2?+2% 428+ .. = 2 z, and —(z®+ 2%+ lf:, to get
2
x—"'———;‘ =X_. (b) Adding the series for cos z and cosh z leads to 1+ 2¢ + o = 7(cosx+608hx)-

(c) In(z—1) = z— 22 + }2° - - s0 changing z to z — 1 gives the series for ln(x —2) around a=1.
16 Y (x — x)™ converges for 0 < z < 27 (to the function ——(-—)—)

—\z—n
18 The first missing term in the sine series is 1’—%)—. In equation (2) for the remainder Ry(z), the
derivative f(5) = cos z is evaluated at some point ¢ instead of at 2x. Always |cose¢| < 1 so the error is
-3
less than l“—_l%’-'-l—. (Confirmed by the alternating series rule: error less than first omitted term.)
20 For the function f(z) = —ln(l —z) with f' =4 z, f'= z-lflz)—,, "= ('1:25:_)“ the error after these terms

is [Rs(z)| < f”"(c)% T @) <1 (1nstead of % : set ¢ = 0). A direct estimate of the missing

24 4
t.ermsintheseriesislhsl—"i— —’5-L+---$i((%)4+(%)5+-~ = 3.
22 The remainder after n terms of the series for ¢* around a = 1is R,(z) = €° ”;_1‘_ : tl . The factor e° is between

1 and e®. As n — oo the factorial assures that R,(z) — 0 and the series converges to e®.

24 f(z) = e~/ equals e=100 a4 5 = .1, However, the Taylor series is identically zero: 0+ 0z +0z2 + - --.
The radius of convergence is r = co but the series agrees with f (z) only at z = 0. The error at z =1
in linear approximation (n = 1) is |Ry(1)] < f" (c:)‘—L = 55(% — —)c"‘/ ", Certainly the difference
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between e—1/% and 0+ Ozise~latz=1.

26 The derivatives of (1 — z)~1/2 are (1 - 2)~%/2,13(1 - 2)=5/2,..., &5—2—(‘2"—_1—1(1 —z)~(@n+1)/2 Ay =0
this nth derivative divided by n! is the coefficient a,,.

28 Y2 na*l=(withm=n—-1)-3_(m+1)z™ (thh m replaced by n) 70 (n+ 1)z".

30 (a) (1+z+22+-~-)(1+z+z2+---) =1+2z+ 322+ ---. The coefficient of z™ isn + 1.
(b) Multiply again by 1+ z+z%+--- to get 1+3z+ 622+ ---. This is (72-)° = cube of geometric series for
125 The derivatives are _31)‘, iz z),, = "3, , -&5_—:;% %TG%F The coefficient of z® is the 5th derivative
at z = 0 divided by 5! = ;2—_%?} =21.

82 This is Problem 26 with = changed to 4z. So the coefficient of z™ is multiplied by 4™. By Problem 26 this
1:8:6-(2n=1) yn _ 13:(2n—1) 2:4:6:-(3n) _ (2n)!

gives 2"n! - n! 1.2.3.n  ~ (n!)3°
34 Take p= % and z = .001; the binomial series gives (1.001)1/ 3 and multiply by 10 to get
(1001)1/3 = 10[1 + 1(.001) — 3(.001)2- -] = 10.003 - -
86 Take p = ;55 and z = ¢ — 1: the binomial series is c" = (1 +z)P =1+ &L+ =1+.0018 + - -- which

diverges since z > 1!! The ordmary series ¢ = 1+ p+ 3p% + - - - correctly gives e1/ 1000 — 1.0010005 - - -

38 sec?z = —ho ~ L5 m 1+ %3, Check by squaring in Problem 37: (secz)? = (1+ % +--)? ~ 1+ 22.

1—-sin‘z
Check by derivative of tanz = z + %- > +---tofind 1+ 22 +-
40 f(g(z)) = a0 + a1 (b1z + boz? +--*) + az(bu: + 6222 +---)2 mag +agbyx + (agbg + agb“;)xz.
Test on f = m & 1— z + 22 (which has ap = 1,a; = —1,a; = 1) and g = 7% ~ 7+ z? (which has
by = 1 = b3). The formula correctly gives f(g(z)) = 1 — z + (0)z2.
42 By Problem 40 with ag = 0 the series starts with f(g(z)) = a1b1z + (a1b2 + azbz)n:2 This agrees with
f(g9(z)) = z when b, = X - and b, =—“’b = —§~ The example f =e* —1=z+ %7 +--- has a; =1 and

ag—zsothatbl——andbg——} These are the coefficients in f~ 1(a:) ln(l+z)=z—%+---.
44 Quick method: Multiply (1 - z)(1+2®+ 28+ - )=1-z+2® -z + 25 - 2" + ..

Slow method: =% = —L—; = (geometric series for —z — z%) = 1 — z — z? +(z+z2)2—(z+zz)3+

(z+z’)‘—(m+zz)5s=1 z+ 022 + z° — z* + 025,

46f0 "‘dz%fo(l-—z +—-—-—+2: 120)d:::—-l +—-—--—+924 1155 = -T47 to 3 places.
48 At z = —1 the alternating series }, Z- = 3 _,: =-1+3— 3+ converges (to In(1 - z) = In2). The
derivative ) z" ' =1+z+2%+---=1—-1+1—-- dlverges. Both series have r = 1; one series

converges at an endpoint of the interval —1 < z < 1 and the other doesn’t.
50 If o/ approaches L then (a,z")'/™ approaches £. By the root test the series ) a,z" converges when
|£| < 1 and diverges when |{| > 1. So the radius of convergence is r = L.
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