
10.1 The Geometric Series (page 373) 

CHAPTER 10 INFINITE SERIES 

10.1 The Geometric Series (page 373) 

The geometric series 1 + z + z2 + . . . adds up to 1/(1- x). It converges provided 1x1 < 1. The sum of n terms 
is (1 - xn)/(l - x). The derivatives of the series match the derivatives of 1/(1- z) at the point x = 0, where 
the nth derivative is n! The decimal 1.111.. . is the geometric series at z = .1 and equals the fraction 1019. The 
decimal .666.. . multiplies this by A. The decimal .999.. . is the same as 1. 

The derivative of the geometric series is 1/(1- x ) ~  = 1 + ZX + 3x2 + . - . . This also comes from squaring the 
geometric series. By choosing z = .01, the decimal 1.02030405 is close to (100/99)~. The differential equation 
dy/dz = y2 is solved by the geometric series, going term by term starting from y(0) = 1. 

The integral of the geometric series is -In(l  - x) = x + x2/2  + - - .  . At z = 1 this becomes the harmonic 
1 series, which diverges. At z = 2 we find ln2 = f + (412/2 + ( f ) ' / ~  + . . . . The change from x to -z produces 

the series 1/(1+ z) = 1 - x + x2 - x3 + . . and ln(1 + z) = x - x2/2  + x3/3 . . . 

In the geometric series, changing to z2 or -z2 gives 1/(1 - z2) = 1 +x2 +x4 + . . -  and 1/(1 + x2) = 
l - x 2 + x 4 - . . .  , Integrating the last one yields z - $z3 + i z 5  - . = tan- lx. The angle whose tangent is 

1 1  1 1  z =  1 is tanmll  = 1- 3 + 5 - .- . .  Then substituting z = 1 gives the series R = 4(1 -  3 + 5 - ...). 

1 Subtraction leaves G - zG = 1 or G = & 3 f .  ,,,, 4.100.34 ,, , ,, 5 2 . 1 + 3 . 2 ~ + 4 - 3 z 2 + . . . =  

7 .I42857 repeats because the next step divides 7 into 1 again 

9 If p (prime, not 2 or 5) divides loN - loM then it divides 10N-M - 1 11 This decimal does not repeat 
1 3  87.123 

gg, ggg 15 * 17 &3 
19 '"2 

1-lnz 2 1  23  tan-'(tan z) = z 
25 ( I + Z + X ~ + Z ~ . . . ) ( ~ - Z + X ~  -z3-) = i + z 2 + z 4 + + -  

1 - 2 0 . 1 - . 0 1 2 3 . . . i ~ l - L  1 -80 292'- 27 2(.1234.. .) is 2 - & . (l-ib,, - 81, loo (1- +# - 81 3 1-+ - 
3 1  - ln( l -  .l) = -1n.9 33 Ainu 2 .9 35 (n + I)! 37 y = 1-bz 

39  All products like alb2 are missed; (1 + 1)(1+ 1) # 1 + 1 4 1  Take z = in (13): In 3 = 1.0986 

43 In 3 seconds the ball goes 78 feet 45  tan z = $; (18) is slower with z = $ 

2 Distancesdown and up: 1 0 + 6 + 6 + 6 - $ + 6 . 3 + . . . =  5 10+2(6)& =dofee t  
S 

I *  integration gives in z = z - - @ - . . . + C and at 4 1 + ( 1 - z ) + ( l - z ) 2 + - . =  * = z )  3 

1 x 2  z = 1 we find C = -1. Therefore lnx= -[(l -x) + + I+ + - . - I .  At z =  0 this is -cp = -00. 

6 Multiplying (1 - x + z2 - . .) times (1 + z + z2 + . .) term by term, the odd powers disappear and one of 

each even power survives. The product is 1 + z2 + z4 + - .  . which is f = - - the product of the 1 z 1+z 1-2' 

two series. 
8 1 =  

13 .076923076923. , - so that c = 76923 and N = 6 and n = 6 (repeat after 6 digits starting immediately). 

1 0  The decimal .010010001~ is not repeating because the number of zeros increases. So it cannot be a fraction. 
1 1064 65 + . . a  which is I +  &(-) = I +  = -. 12  The number 1.065065. . equals 1 + & + (looo) 

2 3 4 1 4  ( l+$+&+. . . ) ( l+&+&+. . . )  = I+, +, + ,, +..-Expressedinfractionsthisis 

16 1 - 2 ~ + ( 2 2 ) ~ - - . - =  1-0 ' = 1 

(;)a + ( 3 3  - . . . = 4 = X 1 8  iZ - t z 2  + i X 3  - . . . = 2 - 
I+, Z+X' 



1 0.2 Convergence Tests: Positive Series (page 380) 

2 0  z - 2z2 + 3z3 - . . , = z ( l  - 22 + 3z2 - . . .) = [change z to  -z in equation ( 5 ) ]  = +. 
1 

( l + x )  
22  z (1+  & + &p + .-) = z(,=) = z(*) = 1+x.  

1 2 4  ex + e2" + e3x + - - .  = ex( l  + ex e2" + . a - )  = hX(,r&). 
2 6  j ( 1 +  z2 + % 4  +.  . .)dz = z+ 2 + 1. + - + .  = # In  by equation (13). This is I A d z  which is 3 5 

also tanh- 'x ( + C) . 
28  ( 1 + z + z 2 ) ( l + z + z 2 ) ( l + z + z 2 )  = ( 1 + 2 z + 3 z 2 + . - . ) ( 1 + z + z 2 )  =1+3x+6x2+- . .  

10 30 . l+ .02 + .003 + - . = & + 2 ( & ) l +  3(&)3 + . - .  = by equation (5) = && = 81. 
5 2  & - ;(&)l + $(&)3 - . - a  = by equation (lob) = In (1  + &) = In  1.1. 
3 4 1 - 1  1 1 ' 2  - . . .  = 

3(3)  + ~ ( 5 )  fi[& - $(&)3 + i(5)' - - . - ]  = by equation (18) = f i t an- '  -L a- - &g. 
36 y'(0) = [y(0)12 = b2; y"(0) = 2y(0)y1(0) = 2bS; y"'(0) = (from second derivative of y' = #) = 

2y(0)y"(O) + 2y1(0)y' (0) = 6b4. Then y(z) = b + b2z + 2b3($) + 6b4($) + . . . = 
b b(1+ bz + b2z2 + b3z3 + -) which is y(x)  = --. 

38 The mean value is p = f + 2 ( i ) ( f )  + 3 ( i ) 2 ( i )  + . - = (by equation (5) with z = i) = f .* = 4. 

Why should you have to  wait for the fourth deal to  get the best hand?? 

40  Note: The equations referred to should be (10) and (13). Choose z = $ in (10a): f + i ( f ) 2  + . . . = - In 5. 
In equation (13) choose z = i so that = 3. Then 2 ( i  + $(i)3 + $(4)' + . .) = ln3. This 

converges faster because of the factor ($)2 between successive terms, compared to  $ in the first series. 

The series are equa l  because - In $ = In 3. 

42  Eguation (18) gives tan-' & rr - + & w .10000 - .00333 + .00002 rr .O9669 (which is .0967 to  four 

decimal places). 

44  The series 1 - 4 + $ - + . . adds to .693. The fact that the first digit is 6 is settled when the sum stays 

below .7, a t  about the term +A (other answers are equally acceptable!). The 50th power of equals 

the 100th power of i. Also 5 = & when an = 2"' or n l n a  = 1001n2 or n = 100E. 

4 6  Equation (20) is r = 4(tan-' 4 + tan-' 5) rr 4(3  - $(i)3 + +(i)' - )(i)7 + $(i)g - A($)' '  

+$ - f ($)3 + j!(f)' - ) ( f )7 )  = 2 - .I6667 + .02500 - .OO446 + .00087 - .00018 + 1.33333 - .04938 + .00329 

-.00026 = 3.1415+ = 3.142. Note: &($)I3 and L ( l )g  will increase the total toward 3.1416. 
9 3 

4 8  x $ = (take z = e' in equation (10)) = -h(l - el). 

10.2 Convergence Tests: Positive Series (page 380) 

The convergence of a1 + a2 + . - is decided by the partial sums s, = a1 + . - - + an. If the s, approach s, 

then x a, = s. For the geometr ic  series 1 + z + . the partial sums are s, = (1 - xn)/(l - x). In that case 

s, -+ 1/(1- z) if and only if 1x1 < 1. In all cases the limit s, + s requires that a, -+ 0. But the harmonic series 

a, = l / n  shows that we can have a, + 0 and still the series diverges. 

The comparison test says that if 0 5 a, 5 b ,  then x an converges if x bn converges. In case a decreas- 

ing ~ ( z )  agrees with a, a t  z = n, we can apply the integral  test. The sum C a, converges if and only if 
y (x )dx  converges. By this test the pseries l /nP  converges if and only if p is g r ea t e r  than 1. For the 

harmonic series (p = I), s, = 1 + - - - + l / n  is near the integral f (n) = In n. 

The r a t i o  test applies when ~ , + ~ / a ,  --+ L. There is convergence if ILI < 1, divergence if ILI > 1, and no 

decision if L = 1 or - 1. The same is true for the root test, when (a,)'/" -+ L. For a geometric-pseries 



10.2 Conwgence Tests: Positive s& (page 380) 

combination an = sn/np, the ratio u ~ + ~ / u ~  equals x (n  + l)P/d'. Its limit is L = x so there is convergence if 
1x1 < I. For the exponentid ez = C xn/n! the limiting ratio an+i/an or z/(n + 1) is L = 0. This series always 
converges because n! grows faster than any sn or np. 

There is no sharp line between convergence and divergence. But if C bn converges and an/bn approaches 
L, it follons from the 1- comparison test that C an sbo converges. 

1 $ + f + - * -  is smaller than 1 + $ + 
1 2 n  1 S an=sn-Sn-l  = ~ ~ s S = l ; ~ n = I , S = ~ ; ~ n = h ~ - h ~ = h & , d = h 2  n+l 

5 No decision on C bn 7 Diverges: &(l  + i + .) 9 C lo&2 converges: C 5 is larger 

11 Converges: C 5 is larger 18 Diverges: C & is smaller 1 6  Diverges: C if; is smaller 
17  Converges: & is larger 19 Converges: z 6 is larger 2 1  L = 0 28 L = 0 25 L = i 
27 root ( v ) n  + L = $ 29 s = 1 (only snrvivor) 81 If y decreases, y(i) I J; y(x)ds 5 z;-' y(i) 
SS CF e-" 5 SOD0 e-=ds = 1; $ + 3 + - = 1 C- 1 85 Converges faster than =e 

=C- "+ 1 
37 Diverges because Jr f i  = 4 ln(s2 + +)IF = oo 8.9 Diverges because JT ze-'dz = =]r = oo 
41  Converges (geometric) because (oD(:)'~x < oo 48 (b) J:+' $ > (base 1) (height &) 
45 After adding we have 1 + + + & (close to ln 2n); thus originally close to ln 2n - ln n = ln 5 = ln 2 

1000 & 1 
47 Jloo ;r = - = .? 49 Comparison test: sin an < an; if an = m then sin an = 0 but C an = oo 

51 an = n-'I2 66 an = ;3? 65 Ratios are 1, i, 1, ?,. . (no limit L); = 1 4; Yes 
57 Root test & + L = 0 69 Root test L = $ 61 Terms don't approach sero: Diverge 
68 Diverge (compare C $) 66 Root test L = 67 Beyond some point $ < 1 or an < bn 

9 9 9 2 The series + + + - - converges because it is below the comparison series m + + -ma . = 

.999. . = 1. 

d ( a )  l+f+!+.**i-+=-%. (b) l n ; + ~ n $ + - . - + l n A =  .+I in(;)($) . . (*I = In -= 1 

(c) 1 + 2 + . . - + n =  i n ( n + l )  
6 (a) If bn + cn < an (all positive) and C a n  converges then by comparison C bn and C cn  converge. 

(b) If an < bn + cn (all positive) and C an diverges then C bn o r  C cn  (or both) must diverge. 
1 1 

8 & + , + + . . . diverges by comparison with & + & + & + +. . in Problem 7. 
10  & + & + & ( + lo&nr) converges by comparison with C 5. (Just drop the 100.) 

l2 ;,,, diverges by comparison with the smaller series C which diverges. Check that 

n2 + 10 is less than n + 10. 
14  C converges because it is less than C = & which converges. 
16 C 5 cos(!) converges because it is below C 5. 
18 Cs in2 ( i )  converges because sin $ < ! gives sin2(:) < 5 and C 5 converges. 

20 z converges because $4 0, which means that eventually ne < ?en and the series compares with 
C which converges. 

22 The limit of & /;;C = = L = 1. SO the ratio test (and root test) give no decision. 
. . 

24 The terms are (%)' = (1 - i ) "  -r c-' so the ratio approaches L = e-l = 1. (Divergent series because its 
e-1 

terms don't approach sero.) 
26 The ratios = -$& approach L = 0. 

28 The ratios '=/$ = (*)" = ( F ) - n  approach L = e-l .  
1 s  30 (a) Put (f - f )  + ( f  - !) + . . . = 1 together with ( i  - f )  + (f - i) + . . = b to obtain s = 1 + 2 = 2. 

(b) l n i + l n $ + - . . + l n & = l n ( ? ) ( ~ ) . . - ( & ) = l n &  approacheslnO=-oo (nosums). 



10.3 Convergence Tests: AH Series (pge 384) 

1 + + . + & is the area of rectangles outside I;+' & = [i ln(2x - I)];+' = i ln(2n + 1). 

The rectangular area is less than 1 + I; & = 1 + i ln(2n - 1). Similarly 1 + k + . + -$ is 
n+l & larger than I, ;r = [- A]"+' ax 1 = A 2 - 2(n+l) , . ~ h e s u m i s s r n a l l e r t h a n l + j ' ~ $ = ~ - & .  

The sum $ + 3 + . is less than $ + I; xe-'dx = $ + [-xe-' - e-'IT = 4. (Note that xe-' decreases 

for x > 1, so 3 is less than the integral from 1 to 2.) The exact sum is in equation (6) of 
e Section 10.1: x + 2x2 + a -  = &% = -& = 

(e 1) 
C & diverges by comparison with & = kln(3x + 5)]? = oo. 

C diverges by comparison with e d x  = [i (ln x ) ~ ] ?  = oo. (v decreases for x > e and these later 

terms decide divergence. Another comparison is with .) 
1 

n(ln n)(ln ln n diverges by comparison with J =cln .gn ln = = ln(ln1n x)]? = 00. 

zr $$ con-kes by comparison with I; 3 = - t e - z a l ~  = &. 
The partial sum 1 + + . + f; is near ,577 + ln n. This exceeds 7 when inn > 6.423 or n > e6-423 > 615. 

The sum exceeds 10 when lnn  > 9.423 or n > e9.423 > 12369. 

The first term is &. After that ;;if;;; < $Ll &. The sum from 3 to n is below fi = ln(1nn) - 
ln(ln2). By page 377 the computer has not reached, n = 3.2 10'' in a million years. So the sum has not 

reached & + ln(ln3.2 lolo)- ln(ln2) < 5. 

If C a, converges then all a, < 1 beyond some point n = N. Therefore a: < a, beyond this point and C a t  

converges by comparison with C a,. 
The limit comparison test says that C & diverges if C diverges. The integral test says that C 
diverges because irn & = ln(lnx)]" = 00. 

a, = fi(ii(:)" has 2 -t 0, -r oo. 
C n 

a, = & has 2 = 6 + O but = (:)" + oo. 

Suppose is between L - c and L + a for n > N. This is true for all n if we change the first terms of the 

sequence to an = aN L " - ~  (n = 0,1, , N). Then the products (%)(") . = 2 are between (L-a)" 
Ptn 

and (L + a)" . Take the nth root: at1'' is between ai ln (L - a) and a. (L + c). For small c and large n 

this nth root is arbitrarily close to L. 
1 & converges by comparison with 3 (note in n > 2 beyond the 8th term). (Also ,) ,,, 

converges!) 

In lon = n ln 10 so the sum is & C ! = oo (harmonic series diverges) 

n-'In approaches 1 so the series cannot converge 

C 9 diverges by comparison with C ;fi if p 5 1. For p > 1 the terms % are eventualy smaller than 

with 1 < P < p. So 9 converges if p > 1. 

C f i  converges if g > 0 by the ratio test: a/& = ( F ) p . h  + L = 0. 68 NO, 

10.3 Convergence Tests: All Series (page 384) 

The series z a, is absolutely convergent if the series z lan( is convergent. Then the original series a, is 

also convergent. But the series z a, can converge without converging absolutely. That is called conditional 
1 1 convergence, and the series 1 - + 5 - . . . is an example. 

For alternating series, the sign of each a,+l is opposite to the sign of a,. With the extra conditions 

that lan+ll 5 lanl and an - 0, the series converges (at least conditionally). The partial sums s l ,  s3, are 
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decreasing and the partial sums s 2 , ~ ,  are increasing. The difference between s, and 3,-1 is an. Therefore 

the two series converge to the same number s. An alternating series that converges absolutely [conditionally] 

(not at all) is ~ ( - l ) ~ + l / n ~  [c(- ~ ) ~ + l / n ]  ( ~ ( - l ) ~ + ' ) .  With absolute [conditional] convergence a reordering 

cannot [can] change the sum. 

I Conditionally not absolutely 8 Absolutely 5 Conditionally not absolutely 7 No convergence 

9 Absolutely 11 No convergence 13 By comparison with C la, 1 
Even sums i + f + i + . . . diverge; an's are not decreasing 1 7  (b) If a, > 0 then s, is too large so s - s, < 0 

s = 1 - ;; below by less than & 
lr ' Subtract 2($ + & + . -) = $(& + $ + . .) = from positive series to get alternating series 

Text proves: If la,l converges so does a, 

N e w s e r i e ~ = ( i ) - f + ( i ) - ~ . . . = i ( l - ~ + $ - f . . . )  2 2 7 ~ l n 2 : a d d l n 2 s e r i e s t o ~ ( l n 2 s e r i e s )  
Terms alternate and decrease to zero; partial sums are 1 + i + - .  - + - Inn -+ y 

.5403? 33 Hint + comparison test 35 Partial sums a, - ao; sum -a0 if a, -+ 0 
2 -&A = 3 but product is not 1 + 5 + . . . 

Write x to base 2, as in 1.0010 which keeps 1 + and deletes i, !, . . . 
; + A + . . .  ,, adds to .$$ = and can't cancel $ 

in  
= cot (trig identity) = tan (: - i ) ; s  = x = - log(1- e') by 10a in Section 10.1; 1-coe 1 

take imaginary part 

C* : converges conditionally (passes alternating series test) but not absolutely: C fi diverges 
C 5 converges (ratio test: = & -r 0) so there is absolute convergence. 

C(- l)"+l sin2 n diverges (terms don't approach zero) 

x(-l)"+'+ : no absolute convergence because sin2 n > ; half of the time and x & diverges. 

The terms alternate in sign but do not decrease steadily; still I believe there is conditional convergence. 

C (- I)"+ ' 2 '1" diverges (terms don't approach zero) 

nl/" decreases steadily to 1 so the alternating test is passed: x(-l)"+'(l- nl/") converges conditionally. 

But nl/" > el/" > (1 + i) so that 11 - nl/"l exceeds $ and there is no absolute convergence. 

Yes, the sum x(-5) converges absolutely. 

The terms alternate in sign but do not decrease to zero. The positive terms t ,  ?, A, . . . approach i and so 

does the sequence f , %, & , . 
The term after ss = 1 - + $ - + i = g is a6 = -+. Then later terms bring the sum upward. So the 

sum s = In2 is between g - i = 5 and g. 
1 The difference between s and sloe is less than 7, the next term in the series (because after that term 

I01 
comes - & and the sums stay between sloe and slol). 

The error - + 101' 102' in the al ternating series is smaller than the error in the positive series. 

The series a1 +a2-a3+ar +a5 -ae + . is sure to converge (conditionally) if 0 5 a3,+3 < < as, 
for every n. Then it passes the alternating series test when each pair of positive terms is combined. 

(The series could converge without passing this particular test.) 

26 The series 1 - i + 5 - I + i - 1 + . . . = In 2 is in Section 10.1. Take half of every term and also insert zeros: 4 6 

o + ; - 0 -  f + 0 + i - . . . =  i l n 2 .  ~ d d  the twoseries term byterm: 1 + 0 + $ -  + +  $ + o + . . - =  
In 2, as the problem requires. This is allowed because the partial sums sk and 8:: of the first two series 

add to the partial sums s, of the third series. Notice something strange: The third series can also be 

produced from the first series only, by rearranging (two positive terms between negative terms). With 
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conditional convergence any sum is possible. 

28 Shorter answer than expected: 1 + $ + - i - ! - comes from rearranging 1 - i + $ - i + - i. Continue 

this way, six t e rms  at a time. The partial sums S6,812, are not changed and still approach In 2. 

The partial sums in between also approach In 2 because the six terms in each group approach zero. 
30 Apply the alternating test. The terms $r-l), *dx are +, -, +, -, . . . (because sin x alternates). 

The terms are decreasing and approach zero (because of i). Why is the sum q? 
=)n+l 

32 We know that sin * = 0, or r - $ + & - -.  = 0. If we stop just before the term f (2n+l)l, the error is less 
wln+l 

than (or to be safe) if ,(2n+l)1 < which is true for n = 10. 
34 The series can start at n = 1 or n = 0 (we choose n = 0 to have geometric series): C a: = 1 + ! + & + . = 

1 ' a n d C b : = l + k + l + - - . =  iq = 5 81 ~ = % a n d ~ a , , b , = l + i + ~ + . - . = ~ = ~ . C h e c k  36 

the Schwan inequality: (%)2 < ($)(%) or 6 6 3 8 < 5 5 4 - 9  or 864 < 1125. 
If C a,, is conditionally but not absolutely convergent, take positive terms until the sum exceeds 10. Then 
take one negative term. Then positive terms until the sum exceeds 20. Then one negative term, and so on. 

The partial sums approach +oo (because the single negative terms go to zero, otherwise no conditional 
convergence in the fist place). 
(a) False (1 - 1 + 1 - 1 + d a s  not converge) (b) False (same example) (c) TRle (d) !Che 

(al + + a~ added to b1 + . . - + bN equals (al + bl) + . + (aN + bN); let N + eo; 

then C a n  + Cbn = C ( a n  + 6,)). 
For s = - 1 choose all minus signs: - - ' T - " -=  -1. For s = 0 choose one plus sign and then all minus: 

A 
1 - 1 - 1 - . . = 0. For s = ? choose alternating signs: ? - f + ! - . . = 2 4 8 -=I. I+ 3 3 

A 
The smallest positive number must include +$; then choose all minus signs: $ - - & - -. . = 1 - = 

3 1-) 

$ - i = 8. (This is for the Cantor set centered at zero. Add $ to obtain the number $ in the usual 
a 

Cantor set between 0 and 1.) With alternating signs the sum ? - + 1 - = 
2 7 

+ = '. 
1+ 3 4 

If a, converges then its terms approach zero: in particular lanl 5 C for some number C. Then C anzn 
converges absolutely by comparison with C Clxln = $&. 

10.4 The Taylor Series for ex, sin x and cos x (page 390) 

The Taylor series is chosen to match f (x) and all its derivatives at the basepoint. Around x = 0 the series 
begins with f (0) + f' (0) x + I f ' '  (0)z2. The coefficient of zn is f (0)/n!. For f (x) = e2 this series is xn/n!. 

For f (z) = cos x the series is 1 - x2/2! + x4/4! - . . . For f (z) = sin z the series is x - x3/3! + . . . . If the signs 
were positive in those. series, the functions would be cosh x and sinh x. Addition gives cosh x + sinh x = ex. 

In the Taylor series for f ( x )  around x = a, the coefficient of (z - a)" is b ,  = f@)(a)/n!. Then bn(z - a)" 
has the same derivatives as f at the basepoint. In the example f (x) = x2, the Taylor coefficients are 
bo = a2, b1 = 2a, b2 = 1. The series b0 + bl(z - a) + b2(x - agrees with the original x2. The series for e2 
around x = a has bn = ea/n!. Then the Taylor series reproduces the identity e2 = (ea)(&x-a). 

We define e2, sin z, cos x, and also eie by their series. The derivative d/dz(l + z + ?x2 + . . -) = 1 + x + 
translates to dl&($) = $. The derivative of 1 - ?x2 + . is -x + x3/3! - . Using i2 = - 1 the series 
1 + i9 + + . . splits into eie = cos 9 + i sin 8. Its square gives eaie = cos 28 + i sin 28. Its reciprocal is 
e-a = cos 0 - i sin 0. Multiplying by r gives reie = r cos 6 + ir sin 6, which connects the polar and rectangular 
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forms of a complex number. The logarithm of eie is iB. 

(az)l 1 1 + 2 x +  ,I + . ; derivatives T ;  1 + 2 + $ + 3 Derivatives in; 1 + ix  + . 
6 Derivatives 2nn!; 1 + 22 + 4x2 + . 7 Derivatives -(n - I)!; -x - f - $ - 
g y = 2 - e z = 1 - x - ~ - . . .  2! l l y = ~ - g + - - . = s b  6 x 1 s y = x e x = x + x 2 + ~ +  . .-  

I S I + ~ X + X ~ ; ~ + ~ ( X - ~ ) + ( X - ~ ) ~  I ~ - ( x - I ) ~  i 9 i - ( ~ - i ) + ( ~ - i ) ~ - . . .  
2 1  (x - 1) - k$ + k$E - . . . = h ( l +  (x - 1)) 23 e-lel-z = e- l ( l -  - 1) + - 
26x+2x2+2x3 27 ? - g + = ! -  720a 2 g x - & + i "  18 600 s l 1 + x 2 + g  S S I + X - $  

3500~10pe; l + ~ ( x - l )  7 - + 3 9 x + $ + g  11 l + x + $  4 s  1 + 0 x - x ~  
.ib - - ib  45 case = -,sine = -A 

2i 47 99th powers -1, -i, e3"14, -i 
49 e-iu/3 and -1; sum sero, product - 1 6 3  iz, i; + 2r i  56 2e2 

25x= 2 s b 2 x = 2 x - ~ + M - . . . s o t h a t  61 ( s b 2 x ) m = - 2 3 + T - . . . =  -8 at x = 0. This agrees with 

the chain rule for (sin 22)'". Also sin 2 r  = 2 r  - + - . = 
51 0. 

4 f = 1, f f  = &., f" = ,*$, f"' = *,. . . . Set z = 0 : f = 1, f' = -1, f" = 21, f'" = -3!, . . 
1+2 1+2 1+2 1+2 

The Taybr series is & = 1 - x + $x2 - $x3 + . . . = x&o(-l)nxn. 
6 f = cosh x ,  f' = sinh x, f" = cosh z, . . Evaluate at x = 0 : f = 1, f' = 0, f" = 1, . . . The Taylor series is 

x 2  x 4  coshx= 1+ q;- + +* . * .  
8 f = ln( l+  x), f' = &, f" = -+, (one step behind Problem 4). Evaluate at x = 0 : f = 0, f' = 1, 1+2) 

f" = -1, f'" = 21, . . The Taylor series is ln( l+  x) = x - 2 + % - . = x - a! 
x3 x 4  %+ J-T+"'. 

10 d = cy + s, y" = cg', y"' = cy", . With yo = 0 this gives yb = s, y: = cs, y r  = c2s,. . . The Taylor series 
i s y ( x ) = s ~ + c s $ + c ~ s ~ + ~ ~ ~ = ~ [ c z + c ~ $ + c ~ ~ + ~ - ~ ] = ~  d e  1)- 

12  y' = y yields y" = y' = y and y"' = y . Then y and all its derivatives equal 1 at z = 3. The Taylor series 
is y(x) = 1 + (x - 3) + h ( x  - 3)2 + . . = ex-3. 

1 4  At x = 0 the equation gives y" = y = 1, y"' = y' = 0 and y"" = y" = y = 1 (even derivatives equal 1, 

odd derivatives equal 0). The Taylor series is y(x) = 1 + $ + $ + . = I( a( + e-X) = cosh x. - 
- 

16 x3 and its derivatives at x = a are as, 3a2, 6a,6,0, . . . . The Taylor series is a' + 3a2(x - a)+ 
p ( x  - a)' + #(x - a)' which agrees with x3. 
- 

1 8  At x = 2 r  the cosine and its derivatives are 1,0, - 1,0,1, . . . The Taylor series is cos x = 1 - + 
fZ=kf - . At x = 0 the function cos(x - 2r) and its derivatives again equal 1,0, -1,0,1, . 4! - 

x 2  x 4  Now the Taybr series is cos(x - 29r) = 1 - + - . 
20 & haa derivatives &, &, . . . At x = 1 those equal 1,1,2,6,. . . and the series is 

l + ( x - l ) + ( x - 1 ) 2 + ( x - 1 ) 3 +  .... 2-x= 
22 At x = 1 the function x4 and its derivatives equal 1,4,12,24,O,O, . . . The Taylor series has five nonzero 

2 24 3 24 terms: x4 = i + r ( x -  I) + q ( x -  I) + g(x- I) + =(x-  1l4. 
24 The function 2' has derivatives 2e2', 4e2*, 8e2', . . Evaluating at x = 1 gives e2, 2e2, 4e2, 8e2, . . The 

2 
Taybr series is eax = e2 + 2e2(x - 1) + 4e2 + 8e2 + (which is c2 times e2(~-')). 

2ecosfi=1-L&F+L$ a! -... =1-:+& -... . (Note that sin fi would not succeed; the terms 
fi, (a3,. . are not acceptable in a Taylor series. The function has no derivative at x = 0.) 
.in= - 2- ++ &, -... 

28 y-- - x 2  x 4  
2 

-I--+- -..., - 
6 120 

30 sin z = P - H I  + . . . = x2 - x6 xl0 - . . . . 
6 120 =+mi5 

32 bL = ellnb = l + x l n b +  f (xlnb12 + a m - .  
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34  1x1 = { -x f o r x < O  
so that 9 = 

-1 f o r x < O  . When x is negative and n is not a whole number, 
+x for x > 0 +1 f o r x > O  

xn is a complex number. But still 5 = nlxln-'einn (-1) = nlxln-' (ein)n-' = nxn-I. 

36 2% = exin2 = 1 + x 1n2 + $(xln 2)' + h ( ~ l n 2 ) ~  + . . . (OK to compute derivatives). 

38 Compute sin-' x and its derivatives at x = 0 : sin-' x = 0, & = 1, x(1-  x2)-3/2 = 0, 
1 x 

(1 - x2)-3/2 + 3x2(1 - x2)-5/2 = 1, gx(l  - x2)-5/2 - 1523(1 - x2)-7/2 = 0, g(1 - x2)-5/2 + . . . = 9. 
1 3  9 5 The Taylor series for sin-' x starts with 0 + x + 0 + ax + 0 + m x  . 

40 Compute ln(cos x) and its derivatives at x = 0 : In 1 = 0, - = - tan x = 0, - sec2 x = -1, -2 sec2 z tan x 
1 2  2 4 = 0, -2 sec4 x - 4 sec2 x tan2 x = -2. The Taylor series for ln(cos x) starts with - zx + 0 - ~x . 

42 Compute tanh-' x (or $ l n ( z )  : Section 6.7) and its derivatives at x = 0 : tanh-' 0 = 0, = 1, 
2 3 2x(1- x2)-2 = O9 2(1- x2)-2 + 4x2(1 - x2)-3 = 2. The series for tanh-' x starts with x + 0 + ~x . 

44 Compute sec2 x and its derivatives at x = 0 : sec2 0 = 1,2 sec2 x tan x = 0,2 sec4 x + 2 sec2 x tan2 x = 2. 

The Taylor series for sec2 x starts with 1 + Ox + $x2 = 1 + x2. 
46 (ei8)2 = e 2 i ~  equals cos 28 + i sin 28, so nei ther  of the proposed answers is correct. - 
48 (a) e2ni/3 = cos ?f + i sin ?f - 1 + iq (b) (e2ni/3)3 = e6ni/3 = 2ni - - -2 e - l ( c ) ( - i + i q ) ( - $ + i q ) =  

- ' - 4 - g = - i - $ . M u l t i p l y b y a n o t h e r ( - k + i $ ) t o g e t  f -i2i=1. 
4 2 4 

50 (2ei"/3 4 = e2ni13 and also (1 + &) (1 + &) = 1 + 2& - 3 = -2 + 2 6 i ;  (4ein14)2 = 1 6 e ~ " / ~  

and also ( 2 f i  + i2&)(2fi /Z i2&) = 8 + 16i - 8 = 16i. 
52 Write (e'8) (e-") = ei(8-t) in rectangular form: (cos s + i sin s) (cos t - i sin t) = cos(s - t) + i sin(s - t). Collect 

real and imaginary parts: cos(s - t) = cos s cos t + sin s sin t and sin($ - t) = s in  s cos t - cos s sin t. 
54  If e = $ then the number N = p![$ - (1 - 1 + 1 . . - f f )]  is an integer, because all  denominators  l! 2! P 

go  evenly in to  t h e  p! te rm.  But in parentheses is an alternating and decreasing series approaching 

e-' = $. The error is less than the last term -$ so IN1 < 1. The only possible integer N is N = 0 which 

is not correct. The contradiction means that e = E was not true: e is not a fraction. 
9 
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If 1x1 < 1x1 and anXn converges, then the series a,xn also converges. There is convergence in a 

symmetric  interval around the origin. For z (2x )"  the convergence radius is r = %. For x xn/n! the radius 

is r = oo. For x ( x  - 3)" there is convergence for lx - 31 < 1. Then x is between 2 and 4. 

Starting with f (x), its Taylor series x anxn has an = f (0)/n!. With basepoint a, the coefficient of ( x - u ) ~  is 

f(n)(a)/n!. The error after the xn term is called the remainder Rn (x). It is equal to f(n+l) (e) (X - a)n+l/(n + I)! 
where the unknown point c is between a and x. Thus the error is controlled by the (n + 1)st derivative. 

The circle of convergence reaches out to the first point where f(x)  fails. For f = 4/(2 - x), that point is 

x = 2. Around the basepoint a = 5, the convergence radius would be r = 3. For sin x and cos x the radius is 

r=oo.  

1 1 3 The series for fi is the binomial series with p = $. Its coefficients are an = (Z)(-Z)(-z) - In!. Its 

convergence radius is 1. Its square is the very short series 1 + x. 
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17  f (c) = cos c < 1; alternating terms might not decrease (as required) 
'n+l .p+1 

1 9 f = L  l-z,lRnlS = G;(1-c)4 = I -  2 

21 f(n+l)(x) = ,*, lRnl 5 ,&(A) 4 0  when x = ? and 1 - c > 

23 R2 = f (x) - f (a) - ft(a)(x - a) - ? f"(a)(x - a)2 so & = & = = 0 at x = a, R r  = f'"; 
Generalired Mean Value Theorem in 3.8 gives a < c < c2 < cl < x 

2 6 1 + ~ ~ ~ + f ( x ~ ) ~  2 7 ( - 1 ) ~ ; ( - l ) ~ ( n + l )  
29 (a) one friend k times, the other n - k times, 0 5 k 5 n; 21 88 (16 - 1)'14 B 1.968 

5 (1 + 1 ) = ( . ) ( . l )  + ( 1 B 1.1105 37 1 + $ + $; r = 4 1  z + x2 + fx3 + i x4  

6 3 6 l r = l , r =  t-1 4 ~ x 2 - $ x 4 + & z 6  461+ :+?+$  47.2727 49-'- '=-'  

2 In the geometric series & = 1 + x + x2 + . change x to 4x2 : & = 1 + 4 + 16x4 + . .. Convergence 
1 1 1 fails when 4x2 reaches l(thus x = 2 or x = - 2). The radius of convergence is r = 5. 

4 tan x has derivatives sec2 x, 2 sec2 x tan x, 2 sec4 x + 4 sec2 x t an2 x. At x = 0 the series is 1 + Ox + $x2 + ox3 = 
1+x2.   he function t a x =  - i s inf initewhencosx=~,atx= 8 a n d x = - 8 .  T h e n r =  8. 

- 1 -Cu ' )+ l&- . . .  6 In the geometric series replace x by -4x2. Then & - . Convergence fails when 14x2 1 
i reaches 1. The function blows up when 4x2 = -1, at x = 4 and x = - 2. The radius of convergence is 

1 r = 2. 
8 The derivative of x ( x  - = & is n(x - = The first series converges between 

(l-x+a)a ' 
x = a - 1 and x = a + 1. The derivative has the same interval of convergence. The series do not 

converge (the terms don't approach zero) at the endpoints x = a - 1 and x = a + 1. 
10  (x - 2r) - begins the Taylor series for sin(%- 2r) = sin x, with basepoint a = 2s. The series converges 

for all z (thus r = oo) because of the factorials 3!, 5!, 7!, . . 
n+ 1 

12 xez = x(1+ x + . . + $ + . -) = x + x2 + + % + . . . Integrate the function and its series from O to 1: 
="+I 1 1  1 

Jtxezdx = [zez - ez]b = 1 = J"(x+x2 dx = 2 + 3 + . . a +  + - a * .  'm+ 
14  (a) Combine x + x4 + x7 + . . = and x2 + x5 + x8 + = 2 1-xs and -(z3 + x6 + a )  = -& I-,, to get 

1 x+x~-x'. (b) Adding the series for cos x and cosh x leads to 1 + $ + $ + . . = (COB x + cosh x). 1-xs 
(c) In(% - 1) = x - i x 2  + ix3  so changing x to x - 1 gives the series for ln(x - 2) around a = 1. 

16 x(x - converges for 0 < x < 2 s  (to the function *j). 

18 The first missing term in the sine series is w. In equation (2) for the remainder R4(x), the 
derivative f(') = cos x is evaluated at some point c instead of at 2r. Always 1 cos cl 1 so the error is 
less than *. (Confirmed by the alternating series rule: error less than fist  omitted term.) 

1-')a 8 
the error after these terms 20 For the function f (x) = - ln(1- x) with f '  = &, f " = 7-L f "I = - (1-2)s 9 

. - . . 

is IR3(x)l 5 f""(c)& = hd% 5 (instead of : set c = 0). A direct estimate of the missing 

terms in the series is R4 5 $ + Lfll+ 5 . . 5 4 A((1)' a + (3)' + . .) = $. 
22 The remainder after n terms of the series for e' around o = 1 is Rn(z) = ec w,. The factor ec is between 

. . 

1 and e'. As n + oo the factorial assures that & (2) + O and the series converges to ez. 
24 f (x) = e- 'Iza equals .-loo at x = .l. However, the Taylor series is identically zero: 0 + Oz + ox2 + . . 

The radius of convergence is r = oo but the series agrees with f (x) only at x = 0. The error at x = 1 
4 in linear approximation (n = 1) is JR1(l)l 5 f"(c) = &(F - 3)e-'Iea. Certainly the difference 
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this nth derivative divided by n! is the coefficient a,. 
28 x;=, nxn-I = (with m = n - 1) . x:=,(m + l)zm = (with m replaced by n) ~~'.o (n + l)xn. 

30 (a) ( 1 + x + x 2 + ~ ~ ~ ) ( 1 + x + x 2 + ~ ~ ~ )  = 1 + 2 x + 3 x 2 + . - - .  The coefficient of xn isn+1. 
(b) Multiply again by 1 + x + x2 + . to get 1 + 32 + 6x2 + . . This is (&)3 = cube of geometric series for 
- The derivatives are j*, &, e, m, w. The coefficient of x5 is the 5th derivative 

at z = 0 divided by 5! = - = 21. 
32 This is Problem 26 with x changed to 4%. So the coefficient of xn is multiplied by 4n. By Problem 26 this 

1-3~6-. 2n-1 1.3-[2n-l) 2-4&--(2n) = !2;)! gives I d n =  n ! 1.2.3-..n nt a 

S4 Take p = and x = .001; the binomial series gives (1.001) 'I3 and multiply by 10 to get 

( l 0 0 1 ) ~ l ~  = l0[l  + $(.001) - i(.001)~ . -1 = 10.003 . . 
36 Take p = & and x = e - 1 : the binomial series is eP = (1 + z)P = 1 + '.=L 1000 + . . = 1 + .0018 + . which 

diverges since x > I!! The ordinary series eP = 1 + p + ip2 + correctly gives elllmO = 1.0010005. . . 
1 38 sec2 z = w & w 1 +x2. Check by squaring in Problem 37: (sec = (1 + $ + w 1 + x2. 

check by derivative of tanx = x + $ + ..- to find 1 + x2 + - . a .  

2 2 40 f (g(z)) w a0 + a1 (blx + b2x2 + . -) + a2(blx + b s 2  + . rn a0 + q b l x  + (alb2 + ajbl)x . 
Test on f = k w 1 - z + x 2  (whichhasao=l ,a l  =-1,a2= 1) a n d g =  & w x + x 2  (whichhas 

b1 = 1 = ba). The formula correctly gives f (g(x)) = 1 - x + (0)x2. 

42 By Problem 40 with a0 = 0 the series starts with f (g(x)) = alblx + (alb2 + a2b:)x2. This agrees with 
f(g(z)) = z when bl = & and b2 = -$ = -2. The example f = ez - 1= x +  "1 21 + ... has a1 = 1 and 

-1 
a2 = i so that b1 = t and b2 = 3. These are the coefficients in f - ' (x) = ln(1 + x) = x - $ + . . . 

44 Quick method: Multiply (1 - x)(l + z3 + x6 + . a )  = 1 - x + x3 - x4 + x6 - x7 + . . 
Slow method: 3 = - = (geometric series for -x - x2) = 1 - x - x2 + (x + x2)2 - (x + + 
(X + x2)4 - (X + 1 - + ox2 + ~3 - x4 + ox5. 

46 $,'e-z3dxw ~ , ' ( ~ - ~ 2 +  $ - E! + E! - d!)dx= 1 - 1 + 1 - 1 
6 24 5.2 7,e + & - = .747 to 3 places. 

48 At x = -1 the alternating series 5 = n = -1 + i - + . converges (to ln(1- x) = ln2). The 

derivative C x n - l  = 1 + x + x 2  + = 1 - 1 + 1 - . diverges. Both series have r = 1; one series 

converges at an endpoint of the interval -1 < x < 1 and the other doesn't. 

50 If akl" approaches L then (anxn) 'In approaches f . By the root test the series an xn converges when 

I < 1 and diverges when I f  1 > 1. So the radius of convergence is r = L. 


