SORTING ALGORITHMS

(download slides and .py files to follow along)

6.100L Lecture 24

Ana Bell

SEARCHING A SORTED LIST
 -- n is len(L)

- Using linear search, search for an element is $\boldsymbol{O}(\mathrm{n})$
- Using binary search, can search for an element in $\Theta(l o g n)$
- assumes the list is sorted!
- When does it make sense to sort first then search?

When sorting is less than $\Theta(\mathrm{n})$!?!? This is never true!

AMORTIZED COST
 -- n is $\operatorname{len}(\mathrm{L})$

- Why bother sorting first?
- Sort a list once then do many searches
- AMORTIZE cost of the sort over many searches

- SORT $+\mathrm{K} * \Theta(\log \mathrm{n})<\mathrm{K} * \Theta(\mathrm{n})$
\rightarrow for large K, SORT time becomes irrelevant

SORTING ALGORITHMS

BOGO/RANDOM/MONKEY SORT

- aka bogosort, stupidsort, slowsort, randomsort, shotgunsort
- To sort a deck of cards
- throw them in the air
- pick them up
- are they sorted?
- repeat if not sorted

© Nmnogueira at English Wikipedia. License: CC-BY-SA. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

COMPLEXITY OF BOGO SORT

```
def bogo_sort(L):
    while not is_sorted(L):
    random.shuffle(L)
```

- Best case: $\boldsymbol{O}(\mathrm{n})$ where n is len(L) to check if sorted
- Worst case: $\Theta($?) it is unbounded if really unlucky

BUBBLE SORT

- Compare consecutive pairs of elements
- Swap elements in pair such that smaller is first
- When reach end of list, start over again
- Stop when no more swaps have been made

© Nmnogueira at English Wikipedia. License: CC-BY-SA. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

COMPLEXITY OF BUBBLE SORT

```
def bubble_sort(L):
    did_swap = True
    while did_swap:
        did_swap = False
        for j in range(1, len(L)):
        if L[j-1] > L[j]:
    did_swap = True
    L[j],L[j-1] = L[j-1],L[j]
```

- Inner for loop is for doing the comparisons
- Outer while loop is for doing multiple passes until no more swaps
- $\Theta\left(n^{2}\right)$ where n is len(L) to do len(L)-1 comparisons and len(L)-1 passes

SELECTION SORT

- First step
- Extract minimum element
- Swap it with element at index 0
- Second step
- In remaining sublist, extract minimum element
- Swap it with the element at index 1
- Keep the left portion of the list sorted
- At ith step, first i elements in list are sorted
- All other elements are bigger than first i elements

COMPLEXITY OF SELECTION SORT

def selection_sort(L):
for i in range(len(L)):
for j in range(i, len(L)):
if L[j] < L[i]:
L[i], L[j] = L[j], L[i]

- Complexity of selection sort is $\Theta\left(n^{2}\right)$ where n is len(L)
- Outer loop executes len(L) times
- Inner loop executes len(L) - itimes, on avg len(L)/2
- Can also think about how many times the comparison happens over both loops: say $n=\operatorname{len}(\mathrm{L})$
- Approx $1+2+3+\ldots+n=(n)(n+1) / 2=n^{2} / 2+n / 2=\Theta\left(n^{2}\right)$

VARIATION ON SELECTION SORT:

 don't swap every time

MERGE SORT

- Use a divide-and-conquer approach:
- If list is of length 0 or 1 , already sorted
- If list has more than one element, split into two lists, and sort each
- Merge sorted sublists
- Look at first element of each, move smaller to end of the result
- When one list empty, just copy rest of other list

MERGE SORT

- Divide and conquer

- Split list in half until have sublists of only 1 element

MERGE SORT

- Divide and conquer

- Merge such that sublists will be sorted after merge

MERGE SORT

- Divide and conquer

- Merge sorted sublists
- Sublists will be sorted after merge

MERGE SORT

- Divide and conquer

- Merge sorted sublists
- Sublists will be sorted after merge

MERGE SORT

- Divide and conquer - done!

MERGE SORT DEMO

1. Recursively divide into subproblems
2. Sort each subproblem using linear merge
3. Merge (sorted) subproblems into output list

CLOSER LOOK AT THE MERGE STEP (EXAMPLE)

Left in list 1	Left in list 2	Compare	Result
(11) $5,12,18,19,20$]	(2, $3,4,17$]	(1.) 2	${ }_{3}$
[5, $12,18,19,20$]	(12, $3,4,17$]	5,(2)	$1 \mathrm{H}^{1} \mathrm{O}$
[5, $12,18,19,20$]	(13) 4,17]	5,3)	[1,2] \bigcirc
[5,12,18,19,20]	[4,17]	5,4	[1,2,3]
[$5,12,18,19,20]$	[17]	5,17	[1,2,3,4]
[12,18,19,20]	[17]	12, 17	[1,2,3,4,5]
[18,19,20]	[17]	18, 17	[1,2,3,4,5,12]
[18,19,20]	[]	18, --	[1,2,3,4,5,12,17]
[]	[]		

[1,2,3,4,5,12,17,18,19,20]

MERGING SUBLISTS STEP

def merge(left, right):
result = []
$i, j=0,0$
while i < len(left) and j < len(right):

return result

COMPLEXITY OF MERGING STEP

- Go through two lists, only one pass
- Compare only smallest elements in each sublist
- Θ (len(left) + len(right)) copied elements
- Worst case Θ (len(longer list)) comparisons
- Linear in length of the lists

FULL MERGE SORT ALGORITHM -- RECURSIVE

```
def merge_sort(L):
```

```
    if len(L) < 2:
```

 if len(L) < 2:
 return L[:]
    ```
        return L[:]
```

 else:
 $$
\begin{aligned}
& \text { middle }=\text { len(L)//2 } \\
& \text { left }=\text { merge_sort(L[:middle]) } \\
& \text { right }=\text { merge_sort(L[middle:]) }
\end{aligned}
$$

return merge(left, right)

- Divide list successively into halves
- Depth-first such that conquer smallest pieces down one branch first before moving to larger pieces

COMPLEXITY OF MERGE SORT

- Each level
- At first recursion level
- $\mathrm{n} / 2$ elements in each list, 2 lists
- One merge $\rightarrow \Theta(n)+\Theta(n)=\Theta(n)$ where n is len (L)
- At second recursion level
- $n / 4$ elements in each list, 4 lists
- Two merges $\rightarrow \Theta(\mathrm{n})$ where n is $\operatorname{len}(\mathrm{L})$
- And so on...
- Dividing list in half with each recursive call gives our levels
- $\Theta(\log n)$ where n is len(L$)$
- Like bisection search: $1=n / 2^{i}$ tells us how many splits to get to one element
- Each recursion level does $\Theta(n)$ work and there are $\Theta(\log n)$ levels, where n is len(L)
- Overall complexity is $\Theta(n \log n)$ where n is $\operatorname{len}(L)$

SORTING SUMMARY
 -- n is len(L)

- Bogo sort
- Randomness, unbounded Θ ()
- Bubble sort
- $\Theta\left(\mathrm{n}^{2}\right)$
- Selection sort
- $\Theta\left(n^{2}\right)$
- Guaranteed the first i elements were sorted
- Merge sort
- $\Theta(\mathrm{n} \log \mathrm{n})$
- $\Theta(n \log n)$ is the fastest a sort can be

COMPLEXITY SUMMARY

- Compare efficiency of algorithms
- Describe asymptotic order of growth with Big Theta
- Worst case analysis
- Saw different classes of complexity
- Constant
- Log
- Linear
- Log linear
- Polynomial
- Exponential
- A priori evaluation (before writing or running code)
- Assesses algorithm independently of machine and implementation
- Provides direct insight to the design of efficient algorithms

MITOpenCourseWare
https://ocw.mit.edu

6.100L Introduction to Computer Science and Programming Using Python Fall 2022

Forinformation aboutciting these materials orourTerms ofUse,visit: https://ocw.mit.edu/terms.

