BIG OH and THETA

(download slides and .py files to follow along)

6.100L Lecture 22

Ana Bell

TIMING

TIMING A PROGRAM

- Use time module
- Importing means import time bringing collection of functions into your own file
def convert_to_km(m):
return m * 1.609
- Start clock
$\longrightarrow t 0=$ time.perf_counter ()
- Call function
convert_to_km(100000)
- Stop clock
\longrightarrow
dt = time.perf_counter() - to
print("t =", dt, "s,")

EXAMPLE: convert_to_km, compound

```
def convert_to_km(m):
    return m * 1.609
def compound(invest, interest, n_months):
    total=0
    for i in range(n_months):
        total = total * interest + invest
    return total
```

- How long does it take to compute these functions?
- Does the time depend on the input parameters?
- Are the times noticeably different for these two functions?

CREATING AN INPUT LIST

$$
\begin{aligned}
& \text { Create a set of input sizes, } \\
& \text { each of which is } 10 \text { times } \\
& \text { larger than the previous one } \\
& {[1,10,100,1000, \ldots]} \\
& \text { L_N = [1] } \\
& \text { for } i \text { in range (7): } \\
& \text { L_N.append (L_N [-1]*10) } \\
& \text { for } N \text { in L_N: } \\
& \mathrm{t}=\text { time.perf_counter() } \\
& \mathrm{km}=\text { convert_to_km(N) } \\
& d t=\text { time.perf_counter ()-t } \\
& \{d t\}
\end{aligned}
$$

RUN IT!

convert_to_km OBSERVATIONS

```
Scientific notation, i.e.
\[
\begin{aligned}
& \text { scientific notatio } 1.44 e-06=10^{-6}
\end{aligned}
\]
\[
\text { convert_to_km(1) took } 4.30 \mathrm{e}-06 \mathrm{sec}(232,558.14 / \mathrm{sec})
\]
\[
\text { convert_to_km(10) took } 7.00 \mathrm{e}-07 \mathrm{sec}(1,428,571.43 / \mathrm{sec})
\]
\[
\text { convert_to_km(100) took } 4.00 \mathrm{e}-07 \mathrm{sec}(2,499,999.99 / \mathrm{sec})
\]
\[
\text { convert_to_km(1000) took } 3.00 \mathrm{e}-07 \mathrm{sec}(3,333,333.33 / \mathrm{sec})
\]
\[
\text { convert_to_km(10000) took } 3.00 \mathrm{e}-07 \mathrm{sec}(3,333,333.33 / \mathrm{sec})
\]
\[
\text { convert_to_km(100000) took 4.00e-07 sec }(2,499,999.99 / \mathrm{sec})
\]
\[
\text { convert_to_km(1000000) took } 4.00 \mathrm{e}-07 \mathrm{sec}(2,499,999.99 / \mathrm{sec})
\]
\[
\text { convert_to_km }(10000000) \text { took } 3.00 \mathrm{e}-07 \mathrm{sec}(3,333,333.33 / \mathrm{sec})
\]
\[
\text { convert_to_km(100000000) took } 3.00 \mathrm{e}-07 \mathrm{sec}(3,333,333.33 / \mathrm{sec})
\]
```

Observation: average time seems independent of size of argument

MEASURE TIME:
 compound with a variable number of months

```
def compound(invest, interest, n_months):
    total=0
    for i in range(n_months):
    total = total * interest + invest
return total
```

compound(1) took $2.26 \mathrm{e}-06$ seconds ($441,696.12 / \mathrm{sec}$) compound(10) took $2.31 \mathrm{e}-06$ seconds $(433,839.48 / \mathrm{sec})$ compound (100) took 6.59e-06 seconds ($151,676.02 / \mathrm{sec}$) compound(1000) took $5.02 \mathrm{e}-05$ seconds ($19,938.59 / \mathrm{sec}$) compound(10000) took $5.10 \mathrm{e}-04$ seconds ($1,961.80 / \mathrm{sec}$) compound(100000) took $5.14 \mathrm{e}-03$ seconds $(194.46 / \mathrm{sec})$ compound(1000000) took $4.79 \mathrm{e}-02$ seconds $(20.86 / \mathrm{sec})$ compound (10000000) took $4.46 \mathrm{e}-01$ seconds $(2.24 / \mathrm{sec})$

Observation 1: Time grows with the input only when n_months changes

Observation 2: average time seems to increase by 10 as size of argument increases by 10

Observation 3: relationship between size and time only predictable for large sizes

MEASURE TIME: sum over L

```
def sum_of(L):
    total = 0.0
    for elt in L:
        total = total + elt
    return total
L_N = [1]
for i in range(7):
    L_N.append(L_N[-1]*10)
```


MEASURE TIME: find element in a list

```
# search each element one-by-one
def is_in(L, x):
    for elt in L:
        if elt==x:
                return True
    return False
```

\# search by bisecting the list (list should be sorted!)
def binary_search (L, x):
lo $=0^{-} \quad$ Integer division,
hi $=\operatorname{len}(L)$
while hi-lo > 1:
$\operatorname{mid}=(h i+l o) \quad / / 2$
if L[mid] <= x:
lo = mid
Measure "average" time.
search for the first, middle, list,
and last element these 3 times.
else:
hi $=$ mid
return $\mathrm{L}[\mathrm{lo} \mathrm{o}$] $=\mathrm{x}$
\# search using built-in operator
x in L

MEASURE TIME: find element in a list

```
is_in (10000000) took \(1.62 \mathrm{e}-01\) seconds \((6.16 / \mathrm{sec})\)
    9.57 times more than for 10 times fewer elements
binary (10000000) took \(9.37 \mathrm{e}-06\) seconds (106,761.64/sec)
    1.40 times more than for 10 times fewer elements
builtin (10000000) took \(5.64 e-02\) seconds ( \(17.72 / \mathrm{sec})\)
    9.63 times more than for 10 times fewer elements
is_in \((100000000)\) took \(1.64 \mathrm{e}+00\) seconds \((0.61 /\) sec)
10.12 times more than for 10 times fewer elements
binary (100000000) took \(1.18 \mathrm{e}-05\) seconds \((84,507.09 / \mathrm{sec}\)
    1.26 times more than for 10 times fewer elements
builtin (100000000) took \(5.70 \mathrm{e}-01\) seconds (1.75/sec)
    10.11 times more than for 10 times fewer elements
```

Observation 1: searching one-by-one grows by factor of 10, when L increases by 10

MEASURE TIME: find element in a list

```
is_in(10000000) took 1.62e-01 seconds (6.16/sec)
    9.57 times more than for 10 times fewer elements
binary(10000000) took 9.37e-06 seconds (106,761.64/sec)
builtin(10000000) took 5.64e-02 seconds (17.72/sec)
    9.63 times more than for 10 times fewer elements
is_in(100000000) took 1.64e+00 seconds (0.61/sec)
    10.12 times more than for 10 times fewer elements
binary(100000000) took 1.18e-05 seconds (84,507.09/sec)
    1.26 times more than for 10 times fewer elements
builtin(100000000) took 5.70e-01 seconds (1.75/sec)
    10.11 times more than for 10 times fewer elements
```

Observation 1: searching one-by-one grows by factor of 10, when L increases by 10
Observation 2: built-in function grows by factor of 10 , when L increases by 10

MEASURE TIME: find element in a list

```
is_in(10000000) took 1.62e-01 seconds (6.16/sec)
    9.57 times more than for 10 times fewer elements
binary(10000000) took 9.37e-06 seconds (106,761.64/sec)
    1.40 times more than for 10 times fewer elements
builtin(10000000) took 5.64e-02 seconds (17.72/sec)
    9.63 times more than for }10\mathrm{ times fewer elements
is_in(100000000) took 1.64e+00 seconds (0.61/sec)
    10.12 times more than for 10 times fewer elements
binary(100000000) took 1.18e-05 seconds (84,507.09/sec)
    1.26 times more than for 10 times fewer elements
builtin(100000000) took 5.70e-01 seconds (1.75/sec)
    10.11 times more than for 10 times fewer elements
```

Observation 1: searching one-by-one grows by factor of 10, when L increases by 10
Observation 2: built-in function grows by factor of 10 , when L increases by 10
Observation 3: binary search time seems almost independent of size

MEASURE TIME: find element in a list

Observation 1: searching one-by-one grows by factor of 10 , when L increases by 10
Observation 2: built-in function grows by factor of 10 , when L increases by 10
Observation 3: binary search time seems almost independent of size
Observation 4: binary search much faster than is_in, especially on larger problems

MEASURE TIME: find element in a list

```
is_in(10000000) took 1.62e-01 seconds (6.16/sec)
    9.57 times more than for 10 times fewer elements
```

binary(10000000) took 9.37e-06 seconds (106,761.64/sec)

```
builtin(10000000) took 5.64e-02 seconds (17.72/sec)
    9.63 times more than for 10 times fewer elements
is_in(100000000) took 1.64e+00 seconds (0.61/sec)
    10.12 times more than for 10 times fewer elements
```

binary(100000000) took 1.18e-05 seconds (84,507.09/sec)
builtin(100000000) took (5.70e-01) seconds (1.75/sec)
10.11 times more than for 10 times fewer elements

Observation 1: searching one-by-one grows by factor of 10, when L increases by 10
Observation 2: built-in function grows by factor of 10, when L increases by 10
Observation 3: binary search time seems almost independent of size
Observation 4: binary search much faster than is_in, especially on larger problems
Observation 5: is_in is slightly slower than using Python's "in" capability

MEASURE TIME: find element in a list

```
def is_in(L, x):
    for elt in L:
        if elt==x:
                return True
    return False
def binary_search(L, x):
    lo = 0
    hi = len(L)
    while hi-lo > 1:
        mid = (hi+lo) // 2
        if L[mid] <= x:
        lo = mid
        else:
            hi = mid
    return L[lo] == x
```


MEASURE TIME: diameter function

```
L=[(\operatorname{cos}(0), sin(0)),
    (cos(1), sin(1)),
    (cos(2), sin(2)), ... ] #example numbers
```

def diameter (L):
farthest_dist $=0$
for i in range(len(L)): 2nd iter: len(L) - 2 pases ...

p1 = L[i]
p2 = L[j]
dist $=$ math.sqrt ($(\mathrm{p} 1[0]-\mathrm{p} 2[0]) * * 2+(\mathrm{p} 1[1]-\mathrm{p} 2[1]) * * 2)$
if dist > farthest_dist:
farthest_dist = dist
return farthest_dist
$L=[(\cos (0), \sin (0)),(\cos (1), \sin (1)),(\cos (2), \sin (2)),(\cos (3), \sin (3))]$

MEASURE TIME: diameter function

```
def diameter(L):
    farthest_dist = 0
    for i in range(len(L)):
        for j in range(i+1, len(L)):
        p1 = L[i]
        p2 = L[j]
        dist = math.sqrt((p1[0]-p2[0])**2+(p1[1]-p2[1])**2)
        if dist > farthest_dist:
            farthest_dist = dist
    return farthest_dist
```

$L=[(\cos (0), \sin (0)),(\cos (1), \sin (1)),(\cos (2), \sin (2)),(\cos (3), \sin (3))]$

MEASURE TIME: diameter function

```
def diameter(L):
    farthest_dist = 0
    for i in range(len(L)):
        for j in range(i+1, len(L)):
        p1 = L[i]
        p2 = L[j]
        dist = math.sqrt((p1[0]-p2[0])**2+(p1[1]-p2[1])**2)
        if dist > farthest_dist:
            farthest_dist = dist
    return farthest_dist
```

$L=[(\cos (0), \sin (0)),(\cos (1), \sin (1)),(\cos (2), \sin (2)),(\cos (3), \sin (3))]$

MEASURE TIME: diameter function

```
def diameter(L):
    farthest_dist = 0
    for i in range(len(L));
        for j in range(i+1, len(L)):
        p1 = L[i]
        p2 = L[j]
        dist = math.sqrt((p1[0]-p2[0])**2+(p1[1]-p2[1])**2)
        if dist > farthest_dist:
            farthest_dist = dist
    return farthest_dist
```


MEASURE TIME: diameter function

```
def diameter(L):
    farthest_dist = 0
    for i in range(len(L))]
        for j in range(i+1, len(L)):
        p1 = L[i]
        p2 = L[j]
        dist = math.sqrt((p1[0]-p2[0])**2+(p1[1]-p2[1])**2)
        if dist > farthest_dist:
            farthest_dist = dist
    return farthest_dist
```

$L=[(\cos (0), \sin (0)),(\cos (1), \sin (1)),(\cos (2), \sin (2))),(\cos (3), \sin (3))]$

MEASURE TIME: diameter function

```
def diameter(L):
    farthest dist = 0
    for i in range(len(L))]
        for j in range(i+1, len(L)):
        p1 = L[i]
        p2 = L[j]
        dist = math.sqrt((p1[0]-p2[0])**2+(p1[1]-p2[1])**2)
        if dist > farthest_dist:
            farthest_dist = dist
    return farthest_dist
```

$L=[(\cos (0), \sin (0)),(\cos (1), \sin (1)),(\cos (2), \sin (2))),(\cos (3), \sin (3))]$

MEASURE TIME: diameter function

```
def diameter(L):
    farthest_dist = 0
    for i in range(len(L));
        for j in range(i+1, len(L)):
        p1 = L[i]
        p2 = L[j]
        dist = math.sqrt((p1[0]-p2[0])**2+(p1[1]-p2[1])**2)
        if dist > farthest_dist:
            farthest_dist = dist
    return farthest_dist
```


MEASURE TIME: diameter function

```
def diameter(L):
    farthest_dist = 0
    for i in range(len(L)):
    for j in range(i+1, len(L)):
        p1 = L[i]
        p2 = L[j]
        dist = math.sqrt((p1[0]-p2[0])**2+(p1[1]-p2[1])**2)
        if dist > farthest_dist:
        farthest_dist = dist
    return farthest_dist
```

- Gets much slower as size of input grows
- Quadratic: for list of size len(L), does len(L)/2 operations per element on average
- len(L) x len(L)/2 operations - worse than linear growth

PLOT OF INPUT SIZE vs. TIME TO RUN

TWO DIFFERENT MACHINES

My old laptop
convert (1) took 0.0919969081879 seconds convert (10) took 0.0812351703644 seconds convert (100) took 0.0810060501099 seconds convert (1000) took 0.0786969661713 seconds convert (10000) took 0.0776309967041 seconds convert (100000) took 0.0800149440765 seconds convert (1000000) took 0.0772659778595 seconds convert (10000000) took 0.0839469432831 seconds convert (100000000) took 0.0802690982819 seconds convert (1000000000) took 0.0796220302582 seconds compound(1) took 0.0781879425049 seconds compound (10) took 0.0791871547699 seconds compound (100) took 0.0802779197693 seconds compound (1000) took 0.0811159610748 seconds compound (10000) took 0.079794883728 seconds compound (100000) took 0.0803499221802 seconds compound (1000000) took 0.180749893188 seconds compound (10000000) took 0.713826179504 seconds compound (100000000) took 6.48052787781 seconds compound (1000000000) took 63.5682651997 seconds

My old desktop
convert (1) took 0.0651700496674 seconds convert (10) took 0.0838208198547 seconds convert (100) took 0.0830719470978 seconds convert (1000) took 0.0816540718079 seconds convert (10000) took 0.0824558734894 seconds convert (100000) took 0.0837979316711 seconds convert (1000000) took 0.0837349891663 seconds convert (10000000) took 0.0843281745911 seconds convert (100000000) took 0.0838270187378 seconds convert (1000000000) took 0.0844709873199 seconds compound (1) took 0.083487033844 seconds compound (10) took 0.0834701061249 seconds compound (100) took 0.083163022995 seconds compound (1000) took 0.0843181610107 seconds compound (10000) took 0.0845410823822 seconds compound (100000) took 0.099858045578 seconds compound (1000000) took 0.183917045593 seconds compound (10000000) took 1.38667988777 seconds compound (100000000) took 12.7653880119 seconds compound (1000000000) took 126.978576899 seconds
~2x slower for large problems

Observation 1: even for the same code, the actual machine may affect speed.
Observation 2: Looking only at the relative increase in run time from a prev run, if input is n times as big, the run time is approx. n times as long.

DON’T GET ME WRONG!

- Timing is a critical tool to assess the performance of programs
- At the end of the day, it is irreplaceable for real-world assessment
- But we will see a complementary tool (asymptotic complexity) that has other advantages
- A priori evaluation (before writing or running code)
- Assesses algorithm independent of machine and implementation (what is intrinsic efficiency of algorithm?)
- Provides direct insight into the design of efficient algorithms

COUNTING

COUNT OPERATIONS

- Assume these steps take constant time:

- Mathematical operations
- Comparisons
- Assignments
- Accessing objects in memory
- Count number of these operations executed as function of size of input

COUNT OPERATIONS: is_in

def is_in_counter (L, x):

```
for elt in L:
    if elt==x:
    return True
return False
```

COUNT OPERATIONS: is_in
def is in counter (L, x) :
global count
count $+=1$
Return value
for elt in L:
Set elt as val from L,
count $+=2$ check elt $==x$
return False

Global lets us reference and change an external variable inside a function - OK for debugging I timing but not good practice in real programs

COUNT OPERATIONS:
binary search
def binary_search_counter (L, x):
global count
$10=0$
hi $=\operatorname{len}(L)$
Set lo, hi, len
count $+=3$
while hi-lo > 1:
While test and the subtraction
\square
count $+=2$
mid $=$ (hi+lo)
count += 3
if L[mid] $<=x$:

$$
l o=\operatorname{mid}
$$

else:

$$
\text { hi }=\text { mid }
$$

Access mid, if test and assign mid
Addition, $\|$, and assign mid
count $+=3$
Access $10,==$ test, return
count $+=3$
return $\mathrm{L}[10]==\mathrm{x}$

COUNT OPERATIONS

is_in testing
for 1 element, is_in used 9 operations
for 10 element, is_in used 37 operations
for 100 element, is_in used 307 operations
Observation 1: number of operations for is_in increases by
10 as size increases by 10
for 1000 element, is_in used 3007 operations
for 10000 element, is_in used 30007 operations
for 100000 element, is_in used 300007 operations
for 1000000 element, is_in used 3000007 operations
binary_search testing
for 1 element, binary search used 15 operations
for 10 element, binary search used 85 operations
for 100 element, binary search used 148 operations
for 1000 element, binary search used 211 operations
Observation 2: but number of operations for binary search grows much more slowly. Unclear at what rate.
for 10000 element, binary search used 295 operations
for 100000 element, binary search used 358 operations
for 1000000 element, binary search used 421 operations

PLOT OF INPUT SIZE vs. OPERATION COUNT

PROBLEMS WITH TIMING AND COUNTING

- Timing the exact running time of the program
- Depends on machine
- Depends on implementation
- Small inputs don't show growth
- Counting the exact number of steps
- Gets us a formula!
- Machine independent, which is good
- Depends on implementation
- Multiplicative/additive constants are irrelevant for large inputs
- Want to:
- evaluate algorithm
- evaluate scalability
- evaluate in terms of input size

EFFICIENCY IN TERMS OF INPUT: BIG-PICTURE
 RECALL mysum (one loop) and square (nested loops)

- mysum (x)
- What happened to the program efficiency as x increased?
- 10 times bigger x meant the program
- Took approx. 10 times as long to run
- Did approx. 10 times as many ops
- Express it in an "order of" way vs. the input variable: efficiency = Order of \mathbf{x}
- square (x)
- What happened to the program efficiency as x increased?
- 2 times bigger x meant the program
- Took approx. 4 times as long to run
- Did approx. 4 times as many ops
- 10 times bigger x meant the program
- Took approx. 100 times as long to run
- Did approx. 100 times as many ops
- Express it in an "order of" way vs. the input variable: efficiency = Order of x^{2}

ORDER of GROWTH

ORDERS OF GROWTH

- It's a notation
- Evaluates programs when input is very big
- Expresses the growth of program's run time
- Puts an upper bound on growth
- Do not need to be precise: "order of" not "exact" growth
- Focus on the largest factors in run time (which section of the program will take the longest to run?)

A BETTER WAY
 A GENERALIZED WAY WITH APPROXIMATIONS

- Use the idea of counting operations in an algorithm, but not worry about small variations in implementation
- When x is big, $3 x+4$ and $3 x$ and x are pretty much the same!
- Don't care about exact value: $o p s=1+x(2+1)$
- Express it in an "order of" way vs. the input: ops = Order of x
- Focus on how algorithm performs when size of problem gets arbitrarily large
- Relate time needed to complete a computation against the size of the input to the problem
- Need to decide what to measure. What is the input?

WHICH INPUT TO USE TO MEASURE EFFICIENCY

- Want to express efficiency in terms of input, so need to decide what is your input
- Could be an integer
-- convert_to_km(x)
- Could be length of list
-- list_sum (L)
- You decide when multiple parameters to a function
-- is_in(L, e)
- Might be different depending on which input you consider

DIFFERENT INPUTS CHANGE HOW THE PROGRAM RUNS

- A function that searches for an element in a list

```
def is_in(L, e):
    for i in L:
        if i == e:
                return True
    return False
```

- Does the program take longer to run as e increases?
- No

$$
\begin{aligned}
& \text { is_in }([1,2,3], 0) \text { vs. } \\
& \text { is_in }(1,2,3], 1000)
\end{aligned}
$$

DIFFERENT INPUTS CHANGE HOW THE PROGRAM RUNS

- A function that searches for an element in a list

```
def is_in(L, e):
    for i in L:
        if i == e:
                return True
    return False
```

 is_in(\([1,2,3], 0)\) vs.
 is_in($[1000,2000,3000]$,

- Does the program take longer to run as L increases?
- What if L has a fixed length and its elements are big numbers?
- No
- What if L has different lengths?
- Yes!

$$
\begin{align*}
& \text { lengths? } \\
& \text { is_in }([1,2,3], 0) \text { vs. } \\
& \text { is in }([1,2,3,4,5,6,7,8,9] \text {, }
\end{align*}
$$

DIFFERENT INPUTS CHANGE HOW THE PROGRAM RUNS

- A function that searches for an element in a list

```
def is_in(L, e):
    for i in L:
        if i == e:
        return True
    return False
```

- When e is first element in the list \rightarrow BEST CASE
- When look through about half of the elements in list \rightarrow AVERAGE CASE
- When e is not in list
\rightarrow WORST CASE
- Want to measure this behavior in a general way

ASYMPTOTIC GROWTH

- Goal: describe how time grows as size of input grows
- Formula relating input to number of operations
- Given an expression for the number of operations needed to compute an algorithm, want to know asymptotic behavior as size of problem gets large
- Want to put a bound on growth
- Do not need to be precise: "order of" not "exact" growth
- Will focus on term that grows most rapidly
- Ignore additive and multiplicative constants, since want to know how rapidly time required increases as we increase size of input
- This is called order of growth
- Use mathematical notions of "big O" and "big 0"
${ }_{43}$ Big Oh and Big Theta

BIG O Definition

$3 x^{2}+20 x+1=O\left(x^{2}\right)$

- Suppose some code runs in $f(x)=3 x^{2}+20 x+1$ steps
-Think of this as the formula from counting the number of ops.
- Big OH is a way to upper bound the growth of any function
- $f(x)=O(g(x))$ means that $g(x)$ times some constant eventually always exceeds $f(x)$
-Eventually means above some threshold value of x

$$
4 x^{2}>3 x^{2}+20 x+1 \forall x>20.04
$$

BIG O FORMALLY

- A big Oh bound is an upper bound on the growth of some function
- $f(x)=O(g(x))$ means there exist constants c_{0}, x_{0} for which $c_{0} g(x) \geq f(x)$ for all $x>x_{0}$

Example: $f(x)=3 x^{2}+20 x+1$

$$
\begin{array}{r}
f(x)=O\left(x^{2}\right) \text {, because } \begin{array}{c}
4 x^{2}>3 x^{2}+20 x+1 \\
\left(c_{0}=4, x_{0}=20.04\right)
\end{array}>21 \\
\hline
\end{array}
$$

6.100L Lecture 22

BIG Θ Definition

$3 x^{2}-20 x-1=\theta\left(x^{2}\right)$

- A big Θ bound is a lower and upper bound on the growth of some function Suppose $f(x)=3 x^{2}-20 x-1$ $\boldsymbol{f}(\boldsymbol{x})=\Theta(g(x))$ means:
there exist constants c_{0}, x_{0} for which $c_{0} g(x) \geq \boldsymbol{f}(\boldsymbol{x})$ for all $x>x_{0}$
and \quad constants c_{1}, x_{1} for which $c_{1} g(x) \leq \boldsymbol{f}(\boldsymbol{x})$ for all $x>x_{1}$
- Example, $\boldsymbol{f}(\boldsymbol{x})=\Theta\left(x^{2}\right)$ because $4 x^{2}>3 x^{2}-20 x-1 \forall x \geq 0 \quad\left(c_{0}=4, x_{0}=0\right)$ and $\quad 2 x^{2}<3 x^{2}-20 x-1 \forall x \geq 21\left(c_{1}=2, x_{1}=20.04\right)$

6.100L Lecture 22

Θ vs O
- In practice, Θ bounds are preferred, because they are "tight" For example: $f(x)=3 x^{2}-20 x-1$
- $f(x)=O\left(x^{2}\right)=O\left(x^{3}\right)=O\left(2^{x}\right)$ and anything higher order because they all upper bound it
- $\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{\Theta}\left(\boldsymbol{x}^{2}\right)$
$\neq \Theta\left(x^{3}\right) \neq \Theta\left(2^{x}\right)$ and anything higher order because they upper bound but not lower bound it

SIMPLIFICATION EXAMPLES

- Drop constants and multiplicative factors
- Focus on dominant term

$$
\begin{aligned}
& \Theta\left(n^{2}\right): n^{2}+2 n+2 \\
& \Theta\left(x^{2}\right): 3 x^{2}+100000 x+3^{1000} \\
& \Theta(a): \log (a)+a+4
\end{aligned}
$$

BIG IDEA

Express Theta in terms of the input.

Don't just use n all the time!

YOU TRY IT!

$\Theta(x): 1000 * \log (x)+x$
$\Theta\left(n^{3}\right): n^{2} \log (n)+n^{3}$
$\Theta(y): \log (y)+0.000001 y$
$\Theta\left(2^{b}\right): 2^{b}+1000 a^{2}+100 * b^{2}+0.0001 a^{3}$
$\Theta\left(a^{3}\right)$
$\Theta\left(2^{b}+a^{3}\right)$
All could be ok, depends on the input we care about

USING Ө TO EVALUATE YOUR ALGORITHM

```
def fact_iter(n):
    """assumes n an int >= 0"""
    answer = 1
    return answer
```


3. assign,
4. subtract,
5. assign

- Number of steps: $5 n+2$
- Worst case asymptotic complexity: $\quad \Theta(\mathrm{n})$
- Ignore additive constants
- 2 doesn't matter when n is big
- Ignore multiplicative constants
- 5 doesn't matter if just want to know how increasing n changes time needed

COMBINING COMPLEXITY CLASSES LOOPS IN SERIES

- Analyze statements inside functions to get order of growth
- Apply some rules, focus on dominant term
- Law of Addition for $\Theta()$:
- Used with sequential statements
- $\Theta(f(n))+\Theta(g(n))=\Theta(f(n)+g(n))$
- For example,

```
for i in range(n): }\quad(n
    print('a')
for j in range(n*n): O(n')
print('b')
```

is $\Theta(n)+\Theta(n * n)=\Theta\left(n+n^{2}\right)=\Theta\left(n^{2}\right)$ because of dominant n^{2} term

COMBINING COMPLEXITY CLASSES NESTED LOOPS

- Analyze statements inside functions to get order of growth
- Apply some rules, focus on dominant term
- Law of Multiplication for $\boldsymbol{\Theta}():$
- Used with nested statements/loops
- $\Theta(f(n)) * \Theta(g(n))=\Theta(f(n) * g(n))$
- For example,

```
    for i in range(n):
        \(\theta(\mathrm{n})\)
        for \(j\) in range \((n / / 2)\) : \(\Theta(n)\) for each outer loop iteration
        print('a')
```

- $\Theta(n) \times \Theta(n)=\Theta(n \times n)=\Theta\left(n^{2}\right)$
- Outer loop runs n times and the inner loop runs n times for every outer loop iteration.

ANALYZE COMPLEXITY

- What is the Theta complexity of this program?
def $f(X)$:

answer $=1$
for i in range $(x):$
for j in range $(i, x):$
answer $+=2$

Outer loop is $\Theta(x)$ Inner loop is $\Theta(x)$
Everything else is $\Theta(1)$

- $\Theta(1)+\Theta(x)^{*} \Theta(x)^{*} \Theta(1)+\Theta(1)$
- Overall complexity is $\Theta\left(x^{2}\right)$ by rules of addition and multiplication

YOU TRY IT!

- What is the Theta complexity of this program? Careful to describe in terms of input (hint: what matters with a list, size of elems of length?)

```
def f(L):
    Lnew = []
        Lnew.append(i**2)
    return Lnew
```


ANSWER:

Loop: $\Theta(\operatorname{len}(\mathrm{L}))$
f is $\Theta(\operatorname{len}(\mathrm{L}))$

YOU TRY IT!

- What is the Theta complexity of this program?

```
def f(L, L1, L2):
    """ L, L1, L2 are the same length """
    inL1 = False
    for i in range(len(L)):
        if L[i] == L1[i]:
            inL1 = True
    inL2 = False
    for i in range(len(L)):
        if L[i] == L2[i]:
            inL2 = True
    return inL1 and inL2
```


ANSWER:

Loop: $\Theta(\operatorname{len}(\mathrm{L}))+\Theta(\operatorname{len}(\mathrm{L}))$
f is $\Theta(\operatorname{len}(L))$ or $\Theta(\operatorname{len}(L 1))$ or $\Theta(\operatorname{len}(L 2))$

COMPLEXITY CLASSES

We want to design algorithms that are as close to top of this hierarchy as possible

Elements

- $\Theta(1)$ denotes constant running time
- $\Theta(\log n)$ denotes logarithmic running time
- $\Theta(n)$ denotes linear running time
- $\Theta(n \log n)$ denotes log-linear running time
- $\Theta\left(n^{c}\right)$ denotes polynomial running time (c is a constant)
- $\Theta\left(c^{n}\right)$ denotes exponential running time (c is a constant raised to a power based on input size)

COMPLEXITY GROWTH

CLASS	$\mathrm{N}=10$	N = 100	N = 1000	$N=1000000$
Constant	1	1	1	1
Logarithmic	1	2	3	6
Linear	10	100	1000	1000000
Log-linear	10	200	3000	6000000
Polynomial	100	10000	1000000	1000000000000
Exponential	1024	$\begin{aligned} & 12676506 \\ & 00228229 \\ & 40149670 \\ & 3205376 \end{aligned}$	1071508607186267320948425 0490600018105614048117055 3360744375038837035105112 4936122493198378815695858 1275946729175531468251871 4528569231404359845775746 9857480393456777482423098 5421074605062371141877954 1821530464749835819412673 9876755916554394607706291 4571196477686542167660429 8316526243868372056680693 76	Good Luck!!

SUMMARY

- Timing is machine/implementation/algorithm dependent
- Counting ops is implementation/algorithm dependent
- Order of growth is algorithm dependent
- Compare efficiency of algorithms
- Notation that describes growth
- Lower order of growth is better
- Independent of machine or specific implementation
- Using Theta
- Describe asymptotic order of growth
- Asymptotic notation
- Upper bound and a lower bound

MITOpenCourseWare
https://ocw.mit.edu

6.100L Introduction to Computer Science and Programming Using Python Fall 2022

Forinformation aboutciting these materials orourTerms ofUse,visit: https://ocw.mit.edu/terms.

