BIG OH and THETA

(download slides and .py files to follow along)
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TIMING



TIMING A PROGRAM

= Use time module xe
dﬁa
. . : (o)

* Importing means import time NEA
bringing collection x\“‘z '0\05‘66’@ '
of functions into def convert to km(m) : ((\N\\e(\\:«\ed\&
your own file return m * 1.609 ot

= Startclock — o = time.perf counter ()

= Call function convert to km(100000)

= Stop clock — gt = time.perf counter() - tO

print ("t =", dt, "s,")
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EXAMPLE: convert to km, compound

def convert to km(m):
return m * 1.609

def compound(invest, interest, n months):

total=0
for 1 in range(n months):
total = total * interest + invest

return total

=" How long does it take to compute these functions?
" Does the time depend on the input parameters?

= Are the times noticeably different for these two
functions?



CREATING AN INPUT LIST

s\1e5
of et
a‘ease" 101 e
Cree™ gwnich ! (e\u'\o\lso
eac‘ﬂ © t‘(\aﬂ e P \
\a‘_%eY 0 1000’ .s
100,
P
L N= [1] e (¥
for 1 in range(7): Compu X
—11% 'meto npy
L N.append(L N[-1]*10) 0 cn
— - N\eas\“e on) fof ed
ct
for N in L N: cunt 3 oW ma?\iaec
t = time.perf counter () o“{\ a“‘.u(\ e
km = convert to km(N) \)‘_epes»g(\eﬁ n
dt = time.perf counter()-t e
print (f"convert to km({N}) took [{dt}|seconds| ({1/dt}/sec)
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RUN IT!

convert to km OBSERVATIONS

convert_to_km(1) took

4.30e-06

sec (232,558.14/sec)

convert_to _km(10) took 7.00e-07 sec (1,428,571.43/sec)
convert_to _km(100) took 4.00e-07 sec (2,499,999.99/sec)
convert _to_km(1000) took 3.00e-07 sec (3,333,333.33/sec)
convert_to_km(10000) took 3.00e-07 sec (3,333,333.33/sec)
convert to km(100000) took 4.00e-07 sec (2,499,999.99/sec)
convert_to km(1000000) took 4.00e-07 sec (2,499,999.99/sec)
convert_to_km(10000000) took 3.00e-07 sec (3,333,333.33/sec)
convert_to _km(100000000) took 3.00e-07 sec (3,333,333.33/sec)

Observation: average time seems independent of size of argument
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MEASURE TIME:
compound with a variable number of months

def compound(invest, interest, n months) :

total=0
for 1 in range(n months):
total = total * interest + invest

return total

Observation 1: Time grows with
the input only when n_months

compound(1) took 2.26e-06 seconds (441,696.12/sec) "8

compound(10) took 2.31e-06 seconds (433,839.48/sec)  Qbservation 2: average time
compound(100) took 6.59e-06 seconds (151,676.02/sec)  seems to increase by 10 as size of
compound(1000) took 5.02e-05 seconds (19,938.59/sec)  5rgument increases by 10

P p—  p—  p— — & —  g—

compound(10000) took 5.10e-04 seconds (1,961.80/sec)

compound(100000) took 5.14e-03 seconds (194.46/sec)  Observation 3: relationship
compound(1000000) took 4.79e-02 seconds (20.86/sec)  between size and time only
compound(10000000) took 4.46e-01 seconds (2.24/sec)  predictable for large sizes
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MEASURE TIME: sum over L

def

L N
for

for

Observation 1: Size of the input is

now the length of the list, not

how big the element numbers are.
sum of (L) :

total = 0.0 Observation 2: average time
for elt in L: seems to increase by 10 as size of
total = total + elt argument increases by 10

return total

Observation 3: relationship
= [1] between size and time only
i in range(7): predictable for large sizes
L N.append(L N[-1]*10)
o\ then Observation 4: Time seems

N in L N: \0’1'2’",..99\ e comparable to computation of
L =(1list(range(N)) | (o5 compound

t = time.perf counter ()

s = sum of (L)

dt = time.perf counter()-t

print (f"sum of ({N}) took {dt} seconds ({1/dt}/sec)")
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MEASURE TIME: find element in a list

def

def

is in(L, x):
for elt in L:
1f elt==x:
return True
return False

binary search(L, Xx):

1o = 0 o ANASO™
hi = len(L) \“‘egddowﬂ
while hi-lo > 1: rou?
mid = (hi+lo) 2
1f L[mid] <= x:
lo = mid
else:
hi = mid
return L[lo] == X
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MEASURE TIME: find element in a list

is in(10000000) took|l.62e-01)seconds (6.16/sec)

9.57 |[times more than for 10 times fewer elements

is in(100000000) took[l.64e+00]seconds (0.61/sec)

Observation 1: searching one-by-one grows by factor of 10, when L increases by 10
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MEASURE TIME: find element in a list

builtin(10000000) took|5.64e-02]|seconds (17.72/sec)

9.63 |[times more than for 10 times fewer elements

builtin(100000000) took[5.70e-01]seconds (1.75/sec)
10.11 times more than for 10 times fewer elements

Observation 1: searching one-by-one grows by factor of 10, when L increases by 10

Observation 2: built-in function grows by factor of 10, when L increases by 10
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MEASURE TIME: find element in a list

binary (10000000) took |9.37e-06|seconds (106,761.64/sec)

1.40 times more than for 10 times fewer elements

binary (100000000) took [1.18e-05 Jseconds (84,507.09/sec)
1.26 times more than for 10 times fewer elements

Observation 1: searching one-by-one grows by factor of 10, when L increases by 10
Observation 2: built-in function grows by factor of 10, when L increases by 10

Observation 3: binary search time seems almost independent of size

12
6.100L Lecture 22



MEASURE TIME: find element in a list

is in(100000000) took[l.64e+00]seconds (0.61/sec)
10.12 times more than for 10 times fewer elements
binary (100000000) took|1.18e-05)seconds (84,507.09/sec)
1.26 times more than for 10 times fewer elements

Observation 1: searching one-by-one grows by factor of 10, when L increases by 10
Observation 2: built-in function grows by factor of 10, when L increases by 10
Observation 3: binary search time seems almost independent of size

Observation 4: binary search much faster than is_in, especially on larger problems
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MEASURE TIME: find element in a list

1s 1in(10000000) took[1.62e—01]seconds (6.16/sec)
9.57 times more than for 10 times fewer elements

builtin(10000000) took 5.64e-02| seconds (17.72/sec)
9.63 times more than for 10 times fewer elements

is in(100000000) took |1.64e+00|seconds (0.61/sec)
10.12 times more than for 10 times fewer elements

builtin(100000000) took 5.70e-01|seconds (1.75/sec)
10.11 times more than for 10 times fewer elements

Observation 1: searching one-by-one grows by factor of 10, when L increases by 10
Observation 2: built-in function grows by factor of 10, when L increases by 10

Observation 3: binary search time seems almost independent of size

Observation 4: binary search much faster than is_in, especially on larger problems

Observation 5: is_in is slightly slower than using Python’s “in” capability
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MEASURE TIME: find element in a list

def is in(L, X):
for elt in L:

1f elt==x:
return True So we have seen
return False computations where
time seems very
def binary search(L, x): different

lo =0 Constant time
hi = len(L) Linear in size of

(]
while hi-lo > 1:
mid = (hi+lo) // 2 argument
if Lmid] <= x: Something less than

[m
lo = mid
else:
hi = mid
return L[lo] == X

linear?
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MEASURE TIME: diameter function

IL=[ (cos(0), sin(0)),
(cos(l), sin(1l)),
(cos(2), sin(2)), ] #example numbers
def diameter|(L)|: \_lpagﬁs
farthest dist = 0 15,t‘\,ter-,\e \L\_\‘ 2ses - S
for 1 in |range(len (L))|: anﬁe \ﬂ\\en lzpmﬁe
for jJ in|range(i+tl, len(L))|: Ona\,era%e,
pl = L[1]
p2 = L[J]
dist = math.sgrt((pl[0]-p2[0])**2+(pl[1l]-p2[1])**2)

1f dist > farthest dist:

farthest dist = dist

return farthest dist

L = [(cos(0),sin(0)), (cos(1l),sin(l)), (cos(2),sin(2)), (cos(3),sin(3))]
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MEASURE TIME: diameter function

def diameter (L) : 1 255€5
farthest dist = 0 'xer'.\e“m a5es -+
for i1 in|range len(L)ﬂ: anﬂﬁﬁ\e \n“)/Zpas
for j in|range(i+1l, len(L))|: on qverage e
pl = L[i]
p2 = L[]]

dist = math.sgrt ((pl[0]-p2[0])**2+ (pl[1]-p2[1])**2)
1f dist > farthest dist:
farthest dist = dist
return farthest dist

L = [(cos(0),sin(0)), (cos(l),sin(l)), (cos(2),sin(2)), (cos(3),sin(3))]
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MEASURE TIME: diameter function

def diameter (L) : 1 255€5
farthest dist = 0 'xer'.\e“m a5es -+
for i1 in|range len(L)ﬂ: anﬂﬁﬁ\e \n“)/Zpas
for j in|range(i+1l, len(L))|: on qverage e
pl = L[i]
p2 = L[]]

dist = math.sgrt ((pl[0]-p2[0])**2+ (pl[1]-p2[1])**2)
1f dist > farthest dist:
farthest dist = dist
return farthest dist

L = [(cos(0),sin(0)), (cos(1l),sin(l)), (cos(2),sin(2)), (cos(3),sin(3))]
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MEASURE TIME: diameter function

def diameter (L) : 1 255€5
farthest dist = 0 'xer'.\e“m a5es -+
for i1 in|range len(L)ﬂ: anﬂﬁﬁ\e \n“)/Zpas
for j in|range(i+1l, len(L))|: on qverage e
pl = L[i]
p2 = L[]]

dist = math.sgrt ((pl[0]-p2[0])**2+ (pl[1]-p2[1])**2)
1f dist > farthest dist:
farthest dist = dist
return farthest dist

L = [(cos(0),sin(0)), (cos(1l),sin(l)), (cos(2),sin(2)), (cos(3),sin(3))]
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MEASURE TIME: diameter function

def diameter (L) : 1 255€5
farthest dist = 0 'xer'.\e“m a5es -+
for i1 in|range len(L)ﬂ: anﬂﬁﬁ\e \n“)/Zpas
for j in|range(i+1l, len(L))|: on qverage e
pl = L[i]
p2 = L[]]

dist = math.sgrt ((pl[0]-p2[0])**2+ (pl[1]-p2[1])**2)
1f dist > farthest dist:
farthest dist = dist
return farthest dist

L = [(cos(0),sin(0)), (cos(l),sin(l)), (cos(2),sin(2)), (cos(3),sin(3))]
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MEASURE TIME: diameter function

def diameter (L) : 1 255€5
farthest dist = 0 'xer'.\e“m a5es -+
for i1 in|range len(L)ﬂ: anﬂﬁﬁ\e \n“)/Zpas
for j in|range(i+1l, len(L))|: on qverage e
pl = L[i]
p2 = L[]]

dist = math.sgrt ((pl[0]-p2[0])**2+ (pl[1]-p2[1])**2)
1f dist > farthest dist:
farthest dist = dist
return farthest dist

L = [(cos(0),sin(0)), (cos(l),sin(l)), (cos(2),sin(2)), (cos(3),sin(3))]
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MEASURE TIME: diameter function

def diameter (L) : 1 255€5
farthest dist = 0 'xer'.\e“m a5es -+
for i1 in|range len(L)ﬂ: anﬂﬁﬁ\e \n“)/Zpas
for j in|range(i+1l, len(L))|: on qverage e
pl = L[i]
p2 = L[]]

dist = math.sgrt ((pl[0]-p2[0])**2+ (pl[1]-p2[1])**2)
1f dist > farthest dist:
farthest dist = dist
return farthest dist

L = [(cos(0),sin(0)), (cos(1l),sin(l)), (cos(2),sin(2)), (cos(3),sin(3))]
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MEASURE TIME: diameter function

def diameter (L) :

farthest dist = 0
for 1 in range(len (L)) :
for jJ in range(i+l, len(L)):
pl = L[1]
pz2 = L[J]

dist = math.sgrt ((pl[0]-p2[0])**2+ (pl[1]-p2[1])**2)
1f dist > farthest dist:
farthest dist = dist
return farthest dist

= Gets much slower as size of input grows

» Quadratic: for list of size len(L), does len(L)/2 operations
per element on average

= len(L) x len(L)/2 operations — worse than linear growth

23
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runtime {s)

PLOT OF INPUT SIZE vs. TIME TO RUN

is_in problem size vs runtime

1=—g  binary search problem size vs runtime

0.175 -
_'_._'_,_.-l"'.-
0.150 - * 1
0.125 - is_in 4
s 3 binary_search
w .
E’
0.075 - =
=
0.050 - 20
0.025 - 1
0.000 -
1 L] 1 L 1 T T T T T
0 2 4 B B 0 2 4 B B
problem size (elements) led problem size {elements) 1ed
diameter problem size vs runtime
25 1
201 diameter
W15
i
E
a—
5 10
0.5 -
0.0 A
T T 24 T T T T
0 500 1000 1500 2000 2500 3000

problem size {elements)




TWO DIFFERENT MACHINES

My old laptop

convert(
convert (
convert (
convert (
convert (
convert (
convert (
convert (
convert(
convert (
compound (
compound (
compound(
compound (
compound(
compound (
compound (
compound(
compound (
compound(

0.0919969081879 seconds
0.0812351703644 seconds
0.0810060501099 seconds
0.0786969661713 seconds
0.0776309967041 seconds
0.0800149440765 seconds
0.0772659778595 seconds
0.0839469432831 seconds
100000000 ) tock 0.0B02690982819 seconds
1000000000 ) took 0.0796220302582 seconds
1 ) tock 0.0781879425049 seconds
10 ) toock 0.0791871547699 seconds
100 ) took 0.0802779197693 seconds
1000 ) took 0.0811159610748 seconds
10000 ) took 0.079794883728 seconds
100000 ) took 0.0803499221802 seconds
1000000 ) tock 0.180749893188 seconds
10000000 ) toock 0.713826179504 seconds
100000000 ) took 6.48052787781 seconds
1000000000 ) took 63.56B82651997 seconds

1 ) tock
10 ) took
100 ) took
1000 ) toock
10000 ) took
100000 ) toock
1000000 ) took
10000000 )} took

My old desktop

convert(
convert(
convert(
convert (
convert (
convert (
convert (
convert (
convert(
convert(
compound (
compound (
compound (
compound (
compound (
compound (
compound (
compound (
compound (
compound (

0.0651700496674 seconds
0.08B3B208B198547 seconds
0.0830719470978 seconds
0.0B16540718079 seconds
0.0824558734894 seconds
0.0837979316711 seconds
0.0837349891663 seconds
0.0843281745911 seconds
100000000 ) took 0.0838270187378B seconds
1000000000 ) took 0.0844709873199 seconds
l ) toock 0.08B3487033844 seconds
10 ) toock 0.0834701061249 seconds
100 ) took 0.083163022995 seconds
1000 ) took 0.0843181610107 seconds
10000 ) tock 0.08B454108B23822 seconds
100000 ) toock 0.099858045578 seconds
1000000 ) took 0.183917045593 seconds
10000000 ) took 1.3B6679B8777 seconds
100000000 ) took 12.7653880119 seconds
1000000000 ) toock 126.978576B99 seconds

~2x slower for large problems

1l ) took

10 ) took
100 ) took
1000 ) took
10000 )} took
100000 ) tock

1000000 ) took
10000000 ) tock

Observation 1: even for the same code, the actual machine may affect speed.

Observation 2: Looking only at the relative increase in run time from a prev run,
if input is n times as big, the run time is approx. n times as long.
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DON'T GET ME WRONG!

=" Timing is a critical tool to assess the performance of programs

= At the end of the day, it is irreplaceable for real-world
assessment

= But we will see a complementary tool (asymptotic complexity)
that has other advantages

= A priori evaluation (before writing or running code)

= Assesses algorithm independent of machine and
implementation (what is intrinsic efficiency of algorithm?)

= Provides direct insight into the design of efficient
algorithms

26
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COUNTING



COUNT OPERATIONS

convert_to_km > 2 ops
= Assume these steps take def convert to km(m) :

constant time:

returnim * 1.609

* Mathematical operations
* Comparisons

9) OQS

sum_of 2 1+len(L)*3+1 = 3*len(L)+2 ops

* Assignments
5 ] _ _ def sum of (L) :
* Accessing objects in L o® fotal = 0 | O
memaory for |1 in L:
¢ —
= Count number of these  \o9® \® total #= 1 |

operations executed as  \¢*

function of size of input

28
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COUNT OPERATIONS: is_in

def is_in counter (L, x):

for elt 1in L:

1f elt==x:
return True
return False

29
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COUNT OPERATIONS: is_in

def is in counter (L, x):
global count
count += 1

for elt 1in L:

count += 2

1f elt==x:
return True
return False

30
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COUNT OPERATIONS:
binary search

def binary search counter (L, x):
global count

lo =0 h\’\er\
hi = len (L) set\or o
count += 3 fhe sub“ac
while hi-lo > 1: white 15t
count += 2 qid
mid = (hi+lo) // 2 | aﬂdass\%ﬂ
count += 3 AQ&MO“J ’
1f L[mid] <= x:
lo = mid ass-\%\f\
else: q .\Hestaﬂ
hi = mid neeess ™
count += 3 ,,teiﬂenﬂn
count += 3 Accesg\O, _=

return L[lo] == X

31
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COUNT OPERATIONS

is_in testing

for 1 element, is_in used 9 operations

for 10 element, is_in used 37 operations

for 100 element, is_in used 307 operations

for 1000 element, is_in used 3007 operations

for 10000 element, is_in used 30007 operations

for 100000 element, is_in used 300007 operations
for 1000000 element, is_in used 3000007 operations

Observation 1: number of
operations for is_in increases by
10 as size increases by 10

binary_search testing

for 1 element, binary search used 15 operations Observation 2: but number
for 10 element, binary search used 85 operations of operations for binary

for 100 element, binary search used 148 operations search grows much more
for 1000 element, binary search used 211 operations slowly. Unclear at what rate.

for 10000 element, binary search used 295 operations
for 100000 element, binary search used 358 operations
for 1000000 element, binary search usgd 421 operations
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https://www.google.com/url?sa=i&url=https%3A%2F%2Fmemegenerator.net%2Finstance%2F80443529%2Fcounting-on-fingers-counting-is-hard&psig=AOvVaw2N3L_6RHEdvsEcbX735Bf0&ust=1602001102034000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCKj4ka3tnewCFQAAAAAdAAAAABAD

op count

PLOT OF INPUT SIZE vs. OPERATION COUNT

168 Is_in problem size vs op count
3.0 A
500 -
25
210 A 400 A
5
1.5 B 300 4
=8
=]
10 1 200 -
05 100 4
0
T T T T T T D L
00 0.2 04 06 08 14
problem size (elements) led
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PROBLEMS WITH TIMING AND COUNTING

" Timing the exact running time of the program
* Depends on machine
* Depends on implementation
e Small inputs don’t show growth

= Counting the exact number of steps
e Gets us a formula!
* Machine independent, which is good
* Depends on implementation
* Multiplicative/additive constants are irrelevant for large inputs

= \WWant to:

= evaluate algorithm
= evaluate scalability
= evaluate in terms of input size

34
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EFFICIENCY IN TERMS OF INPUT: BIG-PICTURE

RECALL mysum (one loop) and square (nested loops)

" mysum (X)
= What happened to the program efficiency as x increased?
= 10 times bigger x meant the program

= Took approx. 10 times as long to run
= Did approx. 10 times as many ops

= Express itin an “order of” way vs. the input variable: efficiency = Order of x

" square (x)
= What happened to the program efficiency as x increased?
= 2 times bigger x meant the program

= Took approx. 4 times as long to run
= Did approx. 4 times as many ops

= 10 times bigger x meant the program
= Took approx. 100 times as long to run
= Did approx. 100 times as many ops

= Express it in an “order of” way vs. the input variable: efficiency = Order of x2

35
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ORDER of GROWTH



ORDERS OF GROWTH

" |t’s a notation

= Evaluates programs when input is very big

= Expresses the growth of program’s run time
= Puts an upper bound on growth

®" Do not need to be precise: “order of” not “exact” growth

" Focus on the largest factors in run time (which section of
the program will take the longest to run?)

37
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A BETTER WAY
A GENERALIZED WAY WITH APPROXIMATIONS

= Use the idea of counting operations in an algorithm, but not
worry about small variations in implementation
= When x is big, 3x+4 and 3x and x are pretty much the same!
= Don’t care about exact value: ops = 1+x(2+1)

= Expressitin an “order of” way vs. the input: ops = Order of x

= Focus on how algorithm performs when size of problem gets
arbitrarily large

= Relate time needed to complete a computation against the
size of the input to the problem

= Need to decide what to measure. What is the input?

38
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WHICH INPUT TO USE TO MEASURE EFFICIENCY

= Want to express efficiency in terms of input, so need to
decide what is your input

= Could be an integer
--convert to km(x)

= Could be length of list
-list sum(L)

" You decide when multiple parameters to a function
-1s 1n(L, e)
= Might be different depending on which input you consider

39
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DIFFERENT INPUTS CHANGE HOW
THE PROGRAM RUNS

= A function that searches for an element in a list
def i1s in(L, e):
for 1 in L:
if 1 ==
return True
return False

= Does the program take longer to run as e increases?
= No S -

40
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DIFFERENT INPUTS CHANGE HOW
THE PROGRAM RUNS

= A function that searches for an element in a list
def i1s in(L, e):
for 1 in L:
if 1 ==
return True 0) VS-
return False ‘ o 1y

= Does the program take longer to run as L increases?

= What if L has a fixed length and its elements are big numbers?
= No

* What if L has different lengths? o) VS- Y 10V
= Yes! (U
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DIFFERENT INPUTS CHANGE HOW
THE PROGRAM RUNS

= A function that searches for an element in a list
def i1s in(L, e):
for 1 in L:
1f 1 == e:
return True
return False

= \When e is first element in the list
— BEST CASE

= When look through about half of the elements in list
—> AVERAGE CASE

= \WWhen e is not in list

-  WORST CASE

" Want to measure this behavior in a general way
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ASYMPTOTIC GROWTH

" Goal: describe how time grows as size of input grows
= Formula relating input to number of operations

= Given an expression for the number of operations needed to
compute an algorithm, want to know asymptotic behavior as size
of problem gets large

= \Want to put a bound on growth
®= Do not need to be precise: “order of” not “exact” growth

= Will focus on term that grows most rapidly

= |gnore additive and multiplicative constants, since want to know how
rapidly time required increases as we increase size of input

= This is called order of growth

= Use mathematical notions of “big O” and “big ©”
»Big Oh and Big Theta
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35000

30000+

25000

20000+

15000+

10000+

5000+

BIG O Definition

3x% + 20x + 1 = 0(x?)

= Suppose some code runsin

Crossover

—— =3x2+20x+1
— 4x2

\ A

f(x) = 3x% + 20x + 1 steps

=Think of this as the formula from
counting the number of ops.

= Big OH is a way to upper bound the
again! growth of any function

=|f(x) = O(g(x)) means that g(x) times
some constant eventually always
exceeds f(x)

4xc?

20 40 60

> 3x%2 4+ 20x 4+ 1Vx >

80

20.04

100 =Fventually means above some
threshold value of x

44
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BIG O FORMALLY

= A big Oh bound is an upper bound on the growth of some function
" f(x)=0( )means there exist
constants cg, xg for which co| >\f(x)[for all x >|x

Example: f(x) = 3x% + 20x + 1

f(x) = 0(x?)|,because 4| x* [>|3x% + 20x + 1Vx =21
(CO = 4', Xo = 2004)

3300 7 40000

—— f=3x2+20x+1 / —— f=3x24+20x+1
3000 ax2 / ax2
2500 / 30000
2000 Crossover at /
%=20.04 20000{ orange > blue
1500+ ' r
for all x>20.04)
1000 ] '
Lol These lines
500 will never
" o— | cross again
0 25 30 0 20 40 60 80 100
O0<=x<=30 45 0<=x<=100
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BIG © Definition

Suppose f(x) =3x% —20x —1

f(x) = 0(g(x)) means:
there exist constants ¢, xy for which
and constants ¢4, x4 for which

3x% —20x — 1 = 0(x?)

= Abig O bound is a lower and upper bound on the growth of some function

é)/.

cog(x) = f(x) forall x > x

c19(x) = f(x) forall x > x4

= Example, f(x) = ©(x*) because | 4x* > 3x%2 —20x—1 Vx>0

(CO — 4"x0 — 0)

and  2x2 <3x2—20x—1 Vx =21 (c; = 2,x1 = 20.04)

3500
— f=3x%2-20x-1

30001 452

2500{ —— 2x?

2000 orange > blue

1500 | forallx>0

1000

reen
500+ x> 20.04
0 : : : | :
0 5 10 15 20 25 30
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300007 —— 2x2

will never

10000 Cross again

Jo000. THese lines /

0 20 40 60
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©@vs O

" |[n practice, © bounds are preferred, because they are “tight”
For example: f(x) = 3x% —20x — 1

" f(x) = 0(x?) = 0(x3) = 0(2%) and anything higher order
because they all upper bound it

" f(x) = 0(x*)
* @(x3) # 0(2%) and anything higher order because they
upper bound but not lower bound it
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SIMPLIFICATION EXAMPLES

= Drop constants and multiplicative factors

= Focus on dominant term

O(n?) :+ 2n + 2

O(x3) :[3x2]+ 100000x + 31000
O(a) : log(a) +@+ 4

48
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BIG IDEA

Express Theta in terms of
the input.

Don’t just use n all the time!



YOU TRY IT!

O(x) : 1000*log(x) + x
O(n3) : n?log(n) + n’
O(y) : log(y) + 0.000001y

O(2°) : 2 + 1000a2 + 100*b2 + 0.0001a3
O(a3)
O(2°+a3)

All could be ok, depends on the input we care about
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USING © TO EVALUATE YOUR
ALGORITHM

: .10 \00
def fact iter(n): o ¢ Ins10€
"""3ssumes n an int >= 0""" 55 pare

answer = 1 . u\'{‘p\\”
while n > 1: Lms\%“\'
answer *= n 3,25 Ak,
(AN
return answer ;. as5\6

= Number of steps: 5n+2

= \Worst case asymptotic complexity:  O(n)

= |gnore additive constants
= 2 doesn’t matter when n is big

= |gnore multiplicative constants

= 5 doesn’t matter if just want to know how increasing n changes time
needed

51
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COMBINING COMPLEXITY CLASSES
LOOPS IN SERIES

= Analyze statements inside functions to get order of growth
= Apply some rules, focus on dominant term

= Law of Addition for O():
= Used with sequential statements

" 0(f(n) +08(g(m) =06(f(n) + gn))

= For example,

for 1 1in range(n) : O(n)
print('a')

for J in range(n*n): O(n?)
print ('b'")

is @(n) + O(n *xn) = O(n +n?) = O(n?) because of
dominant n? term
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COMBINING COMPLEXITY CLASSES
NESTED LOOPS

= Analyze statements inside functions to get order of growth
= Apply some rules, focus on dominant term

= Law of Multiplication for O():
= Used with nested statements/loops

= 0(f(m) *6(g(n)) = 6(f(n) * g(n))
= For example,

n O(n)
for 1 1n range(n) :
for j§ in range (n//2): ©(n)foreach outer loop iteration

print('a'")
O(n) X O(n) = B(n X n) = O(n?)
= Quter loop runs n times and the inner loop runs n times
for every outer loop iteration.
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ANALYZE COMPLEXITY

= What is the Theta complexity of this program?

NS (\o’te ‘x\‘ee( \
P\\\Na a(ame
.mp\,\’(.p
def f :
answer = 1
for i in range (x): Outer loop is O(x)
for j in range (i, x): Inner loop is O(x)
answer += 2 Everything else is O(1)
return answer

" O(1)[+O(x)* O(x)* 0(1) +06(1)

= Overall complexity is @(x?) by rules of addition and
multiplication
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YOU TRY IT!

*" What is the Theta complexity of this program? Careful to
describe in terms of input
(hint: what matters with a list, size of elems of length?)

def f£ (L) :
Lnew = []
for 1 in L:
Lnew.append (1**2)
return Lnew

ANSWER:
Loop: O(len(L))
fis O(len(L))
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YOU TRY IT!

=" What is the Theta complexity of this program?

def £(L, L1, L2):
" 1., Ll, L2 are the same length """
inlLLl] = False
for 1 in range (len (L)) :
if L[i] == L1[1]:
inl.l] = True
inl.2 = False
for 1 in range (len (L)) :
1if L[i] == L2[1]:
inlL.2 = True
return inlLl and inL2

ANSWER:
Loop: O(len(L)) + O(len(L))
fis O(len(L)) or ©(len(L1)) or O(len(L2))
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Big-O Complexity Chart
[Horribte] [8ad] Fair|[Good] [ExceTict]

0O(n"2)

Qinl) | O27n}

COMPLEXITY CLASSES

Operations

We want to design algorithms that are as
close to top of this hierarchy as possible

O(n)

el

FElements

O(1) denotes constant running time

O(log n) denotes logarithmic running time
= @(n) denotes linear running time

= O(nlog n) denotes log-linear running time

" O(n) denotes polynomial running time
(c is a constant)

= O(c") denotes exponential running time
(c is a constant raised to a power based on input size)
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COMPLEXITY GROWTH

coss oo Lo Do oo

Constant

Logarithmic 1 2 3 6

Linear 10 100 1000 1000000
Log-linear 10 200 3000 6000000
Polynomial 100 10000 1000000 1000000000000

Exponential 1024 12676506  1071508607186267320948425  Gqqod Luck!!

0490600018105614048117055

00228229  3360744375038837035105112
4936122493198378815695858

40149670  1575946729175531468251871

3205376 4528569231404359845775746
9857480393456777482423098
5421074605062371141877954
1821530464749835819412673
9876755916554394607706291
4571196477686542167660429
8316526243868372056680693
76
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SUMMARY

* Timing is machine/implementation/algorithm dependent
= Counting ops is implementation/algorithm dependent

* Order of growth is algorithm dependent

= Compare efficiency of algorithms
* Notation that describes growth
* Lower order of growth is better
* Independent of machine or specific implementation

" Using Theta

* Describe asymptotic order of growth
* Asymptotic notation
* Upper bound and a lower bound
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