BIG OH and THETA

(download slides and .py files to follow along)

6.100L Lecture 22

Ana Bell

TIMING

TIMING A PROGRAM

- Use time module
- More accurate Importing means import time meaningfu timer, when used to bringing collection get a time diff of functions into def convert to km(m): your own file return m * 1.609 Start clock t0 = time.perf counter() Call function convert to km(100000) Stop clock dt = time.perf counter() - t0print("t =", dt, "s,")

EXAMPLE: convert_to_km, compound

```
def convert_to_km(m):
    return m * 1.609
```

```
def compound(invest, interest, n_months):
    total=0
    for i in range(n_months):
        total = total * interest + invest
    return total
```

- How long does it take to compute these functions?
- Does the time depend on the input parameters?
- Are the times noticeably different for these two functions?

CREATING AN INPUT LIST

RUN IT! convert to km OBSERVATIONS

Scientific notation, i.e.
$$1.44e-06 = 1.44 \times 10^{-6}$$

convert_to_km(1) took 4.30e-06 sec (232,558.14/sec) convert_to_km(10) took 7.00e-07 sec (1,428,571.43/sec) convert_to_km(100) took 4.00e-07 sec (2,499,999.99/sec) convert_to_km(1000) took 3.00e-07 sec (3,333,333.33/sec) convert_to_km(10000) took 3.00e-07 sec (3,333,333.33/sec) convert_to_km(100000) took 4.00e-07 sec (2,499,999.99/sec) convert_to_km(1000000) took 4.00e-07 sec (2,499,999.99/sec) convert_to_km(1000000) took 3.00e-07 sec (3,333,333.33/sec) convert_to_km(1000000) took 3.00e-07 sec (3,333,333.33/sec) convert_to_km(1000000) took 3.00e-07 sec (3,333,333.33/sec)

Observation: average time seems independent of size of argument

MEASURE TIME:

compound with a variable number of months

```
def compound(invest, interest, n_months):
    total=0
    for i in range(n_months):
        total = total * interest + invest
    return total
```

compound(1) took 2.26e-06 seconds (441,696.12/sec) compound(10) took 2.31e-06 seconds (433,839.48/sec) compound(100) took 6.59e-06 seconds (151,676.02/sec) compound(1000) took 5.02e-05 seconds (19,938.59/sec) compound(10000) took 5.10e-04 seconds (1,961.80/sec) compound(100000) took 5.14e-03 seconds (194.46/sec) compound(100000) took 4.79e-02 seconds (20.86/sec) compound(1000000) took 4.46e-01 seconds (2.24/sec) **Observation 1:** Time grows with the input only when n_months changes

Observation 2: average time seems to increase by 10 as size of argument increases by 10

Observation 3: relationship between size and time only predictable for large sizes

⁷

MEASURE TIME: sum over L

```
def sum of(L):
    total = 0.0
    for elt in L:
        total = total + elt
    return total
L N = [1]
```

for i in range(7): L N.append(L N[-1]*10) [0,1,2,...9] then [0,1,2,...99] etc for N in L N: L = [list(range(N))]compound t = time.perf counter() s = sum of(L)dt = time.perf counter()-t print(f"sum of({N}) took {dt} seconds ({1/dt}/sec)")

Observation 1: Size of the input is now the length of the list, not how big the element numbers are.

Observation 2: average time seems to increase by 10 as size of argument increases by 10

Observation 3: relationship between size and time only predictable for large sizes

Observation 4: Time seems comparable to computation of

```
8
```

6.100L Lecture 22

```
# search each element one-by-one
def is_in(L, x):
    for elt in L:
        if elt==x:
            return True
    return False
```

```
# search by bisecting the list (list should be sorted!)
                                              Measure "average" time.
def binary search(L, x):
                         Integer division,
                                               Search for the first, middle,
                                                and last element of sorted list,
    10 = 0
                           round down
    hi = len(L)
                                                and average these 3 times.
    while hi-lo > 1:
        mid = (hi+lo)
         if L[mid] <= x:
             lo = mid
         else:
            hi = mid
    return L[lo] == x
```

```
# search using built-in operator
x in L
```

is_in(1000000) took 1.62e-01 seconds (6.16/sec)
 9.57 times more than for 10 times fewer elements
binary(1000000) took 9.37e-06 seconds (106,761.64/sec)
 1.40 times more than for 10 times fewer elements
builtin(1000000) took 5.64e-02 seconds (17.72/sec)
 9.63 times more than for 10 times fewer elements

Observation 1: searching one-by-one grows by factor of 10, when L increases by 10

is_in(1000000) took 1.62e-01 seconds (6.16/sec)
 9.57 times more than for 10 times fewer elements
binary(1000000) took 9.37e-06 seconds (106,761.64/sec)
 1.40 times more than for 10 times fewer elements
builtin(10000000) took 5.64e-02 seconds (17.72/sec)
 9.63 times more than for 10 times fewer elements

is_in(10000000) took 1.64e+00 seconds (0.61/sec)
 10.12 times more than for 10 times fewer elements
binary(10000000) took 1.18e-05 seconds (84,507.09/sec)
 1.26 times more than for 10 times fewer elements
builtin(10000000) took 5.70e-01 seconds (1.75/sec)
 10.11 times more than for 10 times fewer elements

Observation 1: searching one-by-one grows by factor of 10, when L increases by 10 **Observation 2:** built-in function grows by factor of 10, when L increases by 10

is_in(1000000) took 1.62e-01 seconds (6.16/sec)
 9.57 times more than for 10 times fewer elements
binary(1000000) took 9.37e-06 seconds (106,761.64/sec)
 1.40 times more than for 10 times fewer elements
builtin(1000000) took 5.64e-02 seconds (17.72/sec)
 9.63 times more than for 10 times fewer elements

is_in(10000000) took 1.64e+00 seconds (0.61/sec)
 10.12 times more than for 10 times fewer elements
binary(10000000) took 1.18e-05 seconds (84,507.09/sec)
 1.26 times more than for 10 times fewer elements
builtin(10000000) took 5.70e-01 seconds (1.75/sec)
 10.11 times more than for 10 times fewer elements

Observation 1: searching one-by-one grows by factor of 10, when L increases by 10 **Observation 2:** built-in function grows by factor of 10, when L increases by 10 **Observation 3:** binary search time seems *almost* independent of size

is_in(1000000) took 1.62e-01 seconds (6.16/sec)
 9.57 times more than for 10 times fewer elements
binary(1000000) took 9.37e-06 seconds (106,761.64/sec)
 1.40 times more than for 10 times fewer elements
builtin(1000000) took 5.64e-02 seconds (17.72/sec)
 9.63 times more than for 10 times fewer elements

is_in(10000000) took 1.64e+00 seconds (0.61/sec)
 10.12 times more than for 10 times fewer elements
binary(10000000) took 1.18e-05 seconds (84,507.09/sec)
 1.26 times more than for 10 times fewer elements
builtin(10000000) took 5.70e-01 seconds (1.75/sec)
 10.11 times more than for 10 times fewer elements

Observation 1: searching one-by-one grows by factor of 10, when L increases by 10
Observation 2: built-in function grows by factor of 10, when L increases by 10
Observation 3: binary search time seems *almost* independent of size
Observation 4: binary search much faster than is_in, especially on larger problems

is_in(1000000) took 1.62e-01 seconds (6.16/sec)
9.57 times more than for 10 times fewer elements
binary(1000000) took 9.37e-06 seconds (106,761.64/sec)
1.40 times more than for 10 times fewer elements
builtin(1000000) took 5.64e-02 seconds (17.72/sec)
9.63 times more than for 10 times fewer elements

is_in(10000000) took 1.64e+00 seconds (0.61/sec)
 10.12 times more than for 10 times fewer elements
binary(10000000) took 1.18e-05 seconds (84,507.09/sec)
 1.26 times more than for 10 times fewer elements
builtin(10000000) took 5.70e-01 seconds (1.75/sec)
 10.11 times more than for 10 times fewer elements

Observation 1: searching one-by-one grows by factor of 10, when L increases by 10 Observation 2: built-in function grows by factor of 10, when L increases by 10 Observation 3: binary search time seems *almost* independent of size Observation 4: binary search much faster than is_in, especially on larger problems Observation 5: is_in is slightly slower than using Python's "in" capability

```
def is in(L, x):
    for elt in L:
        if elt==x:
            return True
    return False
def binary search(L, x):
    10 = 0
    hi = len(L)
    while hi - lo > 1:
        mid = (hi+lo) // 2
        if L[mid] <= x:
            lo = mid
        else:
            hi = mid
    return L[lo] == x
```

So we have seen computations where time seems very different

- Constant time
- Linear in size of argument
- Something less than linear?

L = [(cos(0), sin(0)), (cos(1), sin(1)), (cos(2), sin(2)), (cos(3), sin(3))]

6.100L Lecture 22

L = [(cos(0), sin(0)), (cos(1), sin(1)), (cos(2), sin(2)), (cos(3), sin(3))]

L = [(cos(0), sin(0)), (cos(1), sin(1)), (cos(2), sin(2)), (cos(3), sin(3))]

6.100L Lecture 22

$L = [(\cos(0), \sin(0)), (\cos(1), \sin(1)), (\cos(2), \sin(2)), (\cos(3), \sin(3))]$

6.100L Lecture 22

L = [(cos(0),sin(0)), (cos(1),sin(1)), (cos(2),sin(2)), (cos(3),sin(3))]

L = [(cos(0), sin(0)), (cos(1), sin(1)), (cos(2), sin(2)), (cos(3), sin(3))]

L = [(cos(0),sin(0)), (cos(1),sin(1)), (cos(2),sin(2)), (cos(3),sin(3))]

6.100L Lecture 22

```
def diameter(L):
    farthest_dist = 0
    for i in range(len(L)):
        for j in range(i+1, len(L)):
            p1 = L[i]
            p2 = L[j]
            dist = math.sqrt((p1[0]-p2[0])**2+(p1[1]-p2[1])**2)
            if dist > farthest_dist:
                farthest_dist = dist
            return farthest_dist
```

- Gets much slower as size of input grows
- Quadratic: for list of size len(L), does len(L)/2 operations per element on average
- Ien(L) x Ien(L)/2 operations worse than linear growth

PLOT OF INPUT SIZE vs. TIME TO RUN

TWO DIFFERENT MACHINES

My old laptop

convert(1) took 0.0919969081879 seconds convert(10) took 0.0812351703644 seconds convert(100) took 0.0810060501099 seconds convert(1000) took 0.0786969661713 seconds convert(10000) took 0.0776309967041 seconds convert(100000) took 0.0800149440765 seconds convert(1000000) took 0.0772659778595 seconds convert(10000000) took 0.0839469432831 seconds convert(100000000) took 0.0802690982819 seconds convert(100000000) took 0.0796220302582 seconds compound(1) took 0.0781879425049 seconds compound(10) took 0.0791871547699 seconds compound(100) took 0.0802779197693 seconds compound(1000) took 0.0811159610748 seconds compound(10000) took 0.079794883728 seconds compound(100000) took 0.0803499221802 seconds compound(1000000) took 0.180749893188 seconds compound(10000000) took 0.713826179504 seconds compound(100000000) took 6.48052787781 seconds compound(1000000000) took 63.5682651997 seconds

My old desktop

```
convert( 1 ) took 0.0651700496674 seconds
convert( 10 ) took 0.0838208198547 seconds
convert( 100 ) took 0.0830719470978 seconds
convert( 1000 ) took 0.0816540718079 seconds
convert( 10000 ) took 0.0824558734894 seconds
convert( 100000 ) took 0.0837979316711 seconds
convert( 1000000 ) took 0.0837349891663 seconds
convert( 10000000 ) took 0.0843281745911 seconds
convert( 100000000 ) took 0.0838270187378 seconds
convert( 1000000000 ) took 0.0844709873199 seconds
compound( 1 ) took 0.083487033844 seconds
compound( 10 ) took 0.0834701061249 seconds
compound( 100 ) took 0.083163022995 seconds
compound( 1000 ) took 0.0843181610107 seconds
compound( 10000 ) took 0.0845410823822 seconds
compound( 100000 ) took 0.099858045578 seconds
compound( 1000000 ) took 0.183917045593 seconds
compound( 10000000 ) took 1.38667988777 seconds
compound( 100000000 ) took 12.7653880119 seconds
compound( 1000000000 ) took 126.978576899 seconds
```

~2x slower for large problems

Observation 1: even for the same code, the actual machine may affect speed.

Observation 2: Looking only at the relative increase in run time from a prev run, if input is n times as big, the run time is approx. n times as long.

DON'T GET ME WRONG!

- Timing is a critical tool to assess the performance of programs
 - At the end of the day, it is irreplaceable for real-world assessment
- But we will see a complementary tool (asymptotic complexity) that has other advantages
 - A priori evaluation (before writing or running code)
 - Assesses algorithm independent of machine and implementation (what is intrinsic efficiency of algorithm?)
 - Provides direct insight into the design of efficient algorithms

COUNTING

COUNT OPERATIONS

- Assume these steps take constant time:
 - Mathematical operations
 - Comparisons
 - Assignments
 - Accessing objects in memory
- Count number of these operations executed as function of size of input

convert_to_km → 2 ops
def convert_to_km(m):
 return m * 1.609
 2005

 $sum_of \rightarrow 1+len(L)*3+1=3*len(L)+2 ops$ def sum of(L): 1 op total = 0 1 op for i in L: total += i 2 ops return total 2 ops 1 op

COUNT OPERATIONS: is_in

def is_in_counter(L, x):

for elt in L:

if elt==x: return True return False

COUNT OPERATIONS: is_in

6.100L Lecture 22

COUNT OPERATIONS: binary search

31 6.100L Lecture 22

COUNT OPERATIONS

is_in testing

- for 1 element, is_in used 9 operations
- for 10 element, is_in used 37 operations
- for 100 element, is_in used 307 operations
- for 1000 element, is_in used 3007 operations
- for 10000 element, is_in used 30007 operations
- for 100000 element, is_in used 300007 operations
- for 1000000 element, is_in used 3000007 operations

binary_search testing

- for 1 element, binary search used 15 operations
- for 10 element, binary search used 85 operations
- for 100 element, binary search used 148 operations
- for 1000 element, binary search used 211 operations
- for 10000 element, binary search used 295 operations
- for 100000 element, binary search used 358 operations
- for 1000000 element, binary search used 421 operations

Observation 1: number of operations for is_in increases by 10 as size increases by 10

Observation 2: *but* number of operations for binary search grows *much more slowly*. Unclear at what rate.

PLOT OF INPUT SIZE vs. OPERATION COUNT

³³ 6.100L Lecture 22

PROBLEMS WITH TIMING AND COUNTING

- Timing the exact running time of the program
 - Depends on machine
 - Depends on implementation
 - Small inputs don't show growth
- Counting the exact number of steps
 - Gets us a formula!
 - Machine independent, which is good
 - Depends on implementation
 - Multiplicative/additive constants are irrelevant for large inputs
- Want to:
 - evaluate algorithm
 - evaluate scalability
 - evaluate in terms of input size

EFFICIENCY IN TERMS OF INPUT: BIG-PICTURE RECALL mysum (one loop) and square (nested loops)

- mysum(x)
 - What happened to the **program efficiency as x increased**?
 - 10 times bigger x meant the program
 - Took approx. 10 times as long to run
 - Did approx. 10 times as many ops
 - Express it in an "order of" way vs. the input variable: efficiency = Order of x
- square(x)
 - What happened to the program efficiency as x increased?
 - 2 times bigger x meant the program
 - Took approx. 4 times as long to run
 - Did approx. 4 times as many ops
 - 10 times bigger x meant the program
 - Took approx. 100 times as long to run
 - Did approx. 100 times as many ops
 - Express it in an "order of" way vs. the input variable: efficiency = Order of x²

ORDER of GROWTH

ORDERS OF GROWTH

- It's a notation
- Evaluates programs when input is very big
- Expresses the growth of program's run time
- Puts an upper bound on growth
- Do not need to be precise: "order of" not "exact" growth
- Focus on the largest factors in run time (which section of the program will take the longest to run?)

A BETTER WAY A GENERALIZED WAY WITH APPROXIMATIONS

- Use the idea of counting operations in an algorithm, but not worry about small variations in implementation
 - When x is big, 3x+4 and 3x and x are pretty much the same!
 - Don't care about exact value: ops = 1+x(2+1)
 - Express it in an "order of" way vs. the input: ops = Order of x
- Focus on how algorithm performs when size of problem gets arbitrarily large
- Relate time needed to complete a computation against the size of the input to the problem
- Need to decide what to measure. What is the input?

38

6.100L Lecture 22

WHICH INPUT TO USE TO MEASURE EFFICIENCY

- Want to express efficiency in terms of input, so need to decide what is your input
- Could be an integer
 -- convert_to_km(x)
- Could be length of list
 - --list_sum(L)
- You decide when multiple parameters to a function -- is in(L, e)
 - Might be different depending on which input you consider

DIFFERENT INPUTS CHANGE HOW THE PROGRAM RUNS

■ A function that searches for an element in a list
def is_in(L, e):
 for i in L:
 if i == e:
 return True
 return False

Does the program take longer to run as e increases?

is_in([1,2,3], 0) VS. is_in([1,2,3], 1000)

No

DIFFERENT INPUTS CHANGE HOW THE PROGRAM RUNS

A function that searches for an element in a list

is_in([1,2,3], 0) vs. is_in([1000,2000,3000], 0)

- Does the program take longer to run as L increases?
 - What if L has a fixed length and its elements are big numbers? is_in([1,2,3], 0) Vs. is_in([1,2,3,4,5,6,7,8,9,10], 0) is_in([1,2,3,4,5,6,7,8,9,10], 0)
 - No
 - What if L has different lengths?
 - Yes!

6.100L Lecture 22

DIFFERENT INPUTS CHANGE HOW THE PROGRAM RUNS

• A function that searches for an element in a list
def is_in(L, e):
 for i in L:
 if i == e:
 return True
 return False

- $\hfill\blacksquare$ When e is first element in the list
 - \rightarrow BEST CASE
- When look through about half of the elements in list
 - \rightarrow AVERAGE CASE
- When e is not in list
 - \rightarrow WORST CASE
 - Want to measure this behavior in a general way

ASYMPTOTIC GROWTH

- Goal: describe how time grows as size of input grows
 - Formula relating input to number of operations
- Given an expression for the number of operations needed to compute an algorithm, want to know asymptotic behavior as size of problem gets large
 - Want to put a **bound** on growth
 - Do not need to be precise: "order of" not "exact" growth
- Will focus on term that grows most rapidly
 - Ignore additive and multiplicative constants, since want to know how rapidly time required increases as we increase size of input
- This is called order of growth
 - Use mathematical notions of "big O" and "big O"

43 Big Oh and Big Theta

6.100L Lecture 22

BIG O Definition

 $3x^2 + 20x + 1 = O(x^2)$

Suppose some code runs in $f(x) = 3x^2 + 20x + 1$ steps

Think of this as the formula from counting the number of ops.

- Big OH is a way to upper bound the growth of *any* function
- f(x) = O(g(x)) means that g(x) times some constant eventually always exceeds f(x)

 Eventually means above some threshold value of x

BIG O FORMALLY

- A big Oh bound is an upper bound on the growth of some function
- f(x) = O(g(x)) means there exist constants c_0, x_0 for which $c_0 g(x) \ge f(x)$ for all $x > x_0$

Example: $f(x) = 3x^2 + 20x + 1$

$$f(x) = O(x^2)$$
, because $4x^2 > 3x^2 + 20x + 1 \forall x \ge 21$
 $(c_0 = 4, x_0 = 20.04)$

BIG O Definition

$3x^2 - 20x - 1 = \theta(x^2)$

• A big Θ bound is a lower and upper bound on the growth of some function Suppose $f(x) = 3x^2 - 20x - 1$

Θ vs O

• In practice, Θ bounds are preferred, because they are "tight" For example: $f(x) = 3x^2 - 20x - 1$

•
$$f(x) = O(x^2) = O(x^3) = O(2^x)$$
 and anything higher order
because they all upper bound it

• $f(x) = \Theta(x^2)$ $\neq \Theta(x^3) \neq \Theta(2^x)$ and anything higher order because they upper bound but not lower bound it

SIMPLIFICATION EXAMPLES

- Drop constants and multiplicative factors
- Focus on dominant term

$$\Theta(n^2)$$
 : $n^2 + 2n + 2$
 $\Theta(x^2)$: $3x^2 + 10000x + 3^{1000}$
 $\Theta(a)$: $\log(a) + a + 4$

BIG IDEA

Express Theta in terms of the input.

Don't just use n all the time!

YOU TRY IT!

- $\Theta(x)$: 1000*log(x) + x
- $\Theta(n^3)$: $n^2 \log(n) + n^3$
- Θ(y) : log(y) + 0.00001y
- $\Theta(2^{b})$: 2^{b} + $1000a^{2}$ + $100*b^{2}$ + $0.0001a^{3}$ $\Theta(a^{3})$
- Θ(2^b+a³)

All could be ok, depends on the input we care about

USING Θ TO EVALUATE YOUR ALGORITHM

<u>5 steps inside loop</u> 1. compare, 2. multiply, 3. assign, 4. subtract, 5. assign

- Number of steps: 5n + 2
- Worst case asymptotic complexity: O(n)
 - Ignore additive constants
 - 2 doesn't matter when n is big
 - Ignore multiplicative constants
 - 5 doesn't matter if just want to know how increasing n changes time needed

COMBINING COMPLEXITY CLASSES LOOPS IN SERIES

- Analyze statements inside functions to get order of growth
- Apply some rules, focus on dominant term
- Law of Addition for Θ():
 - Used with sequential statements
 - $\Theta(f(n)) + \Theta(g(n)) = \Theta(f(n) + g(n))$
- For example,

```
for i in range(n): \Theta(n)

print('a')

for j in range(n*n): \Theta(n^2)

print('b')

S \Theta(n) + \Theta(n * n) = \Theta(n + n^2) = \Theta(n^2)
```

is $\Theta(n) + \Theta(n * n) = \Theta(n + n^2) = \Theta(n^2)$ because of dominant n^2 term

COMBINING COMPLEXITY CLASSES NESTED LOOPS

- Analyze statements inside functions to get order of growth
- Apply some rules, focus on dominant term
- Law of Multiplication for Θ():
 - Used with nested statements/loops
 - $\Theta(f(n)) * \Theta(g(n)) = \Theta(f(n) * g(n))$
- For example,

for i in range(n):
 for j in range(n//2): Θ(n) for each outer loop iteration
 print('a')

- $\Theta(n) \times \Theta(n) = \Theta(n \times n) = \Theta(n^2)$
 - Outer loop runs n times and the inner loop runs n times for every outer loop iteration.

ANALYZE COMPLEXITY

What is the Theta complexity of this program?

Outer loop is Θ(x) Inner loop is Θ(x) Everything else is Θ(1)

- $\Theta(1)$ + $\Theta(x)^* \Theta(x)^* \Theta(1)$ + $\Theta(1)$
- Overall complexity is O(x²) by rules of addition and multiplication

YOU TRY IT!

 What is the Theta complexity of this program? Careful to describe in terms of input (hint: what matters with a list, size of elems of length?)

```
def f(L):
   Lnew = []
   for i in L:
      Lnew.append(i**2)
   return Lnew
```

ANSWER: Loop: Θ(len(L)) f is Θ(len(L))

YOU TRY IT!

What is the Theta complexity of this program?

```
def f(L, L1, L2):
    """ L, L1, L2 are the same length """
    inL1 = False
    for i in range(len(L)):
        if L[i] == L1[i]:
            inL1 = True
    inL2 = False
    for i in range(len(L)):
        if L[i] == L2[i]:
            inL2 = True
    return inL1 and inL2
```

ANSWER:

Loop: $\Theta(\text{len}(L)) + \Theta(\text{len}(L))$ f is $\Theta(\text{len}(L))$ or $\Theta(\text{len}(L1))$ or $\Theta(\text{len}(L2))$

Big-O Complexity Chart

COMPLEXITY CLASSES

We want to design algorithms that are as close to top of this hierarchy as possible

Elements

- Θ(1) denotes constant running time
- Θ(log n) denotes logarithmic running time
- Θ(n) denotes linear running time
- Θ(n log n) denotes log-linear running time
- O(n^c) denotes polynomial running time (c is a constant)
- Θ(cⁿ) denotes exponential running time
 (c is a constant raised to a power based on input size)

COMPLEXITY GROWTH

CLASS	N = 10	N = 100	N = 1000	N = 1000000
Constant	1	1	1	1
Logarithmic	1	2	3	6
Linear	10	100	1000	1000000
Log-linear	10	200	3000	6000000
Polynomial	100	10000	1000000	100000000000
Exponential	1024	12676506 00228229 40149670 3205376	1071508607186267320948425 0490600018105614048117055 3360744375038837035105112 4936122493198378815695858 1275946729175531468251871 4528569231404359845775746 9857480393456777482423098 5421074605062371141877954 1821530464749835819412673 9876755916554394607706291 4571196477686542167660429 8316526243868372056680693 76	Good Luck!!

SUMMARY

- Timing is machine/implementation/algorithm dependent
- Counting ops is implementation/algorithm dependent
- Order of growth is algorithm dependent
- Compare efficiency of algorithms
 - Notation that describes growth
 - Lower order of growth is better
 - Independent of machine or specific implementation
- Using Theta
 - Describe asymptotic order of growth
 - Asymptotic notation
 - Upper bound and a lower bound

6.100L Introduction to Computer Science and Programming Using Python Fall 2022

Forinformation aboutciting these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.