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6.0001 LECTURE 8

TIMING A PROGRAM

 Use time module
 Importing means

bringing collection
of functions into
your own file
 Start clock
 Call function
 Stop clock

import time

def convert_to_km(m):

return m * 1.609 

t0 = time.perf_counter()

convert_to_km(100000)

dt = time.perf_counter() - t0

print("t =", dt, "s,")
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6.0001 LECTURE 9

EXAMPLE: convert_to_km, compound

 How long does it take to compute these functions?
 Does the time depend on the input parameters?
 Are the times noticeably different for these two

functions?

def convert_to_km(m):
return m * 1.609

def compound(invest, interest, n_months):
total=0
for i in range(n_months):

total = total * interest + invest
return total

6.100L Lecture 22
4



L_N = [1]
for i in range(7):

L_N.append(L_N[-1]*10)

for N in L_N:
t = time.perf_counter()
km = convert_to_km(N)
dt = time.perf_counter()-t
print(f"convert_to_km({N}) took {dt} seconds ({1/dt}/sec)")

6.0001 LECTURE 9

CREATING AN INPUT LIST
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RUN IT!
convert_to_km OBSERVATIONS

Observation: average time seems independent of size of argument
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6.0001 LECTURE 9

MEASURE TIME:
compoundwith a variable number of months

Observation 2: average time 
seems to increase by 10 as size of 
argument increases by 10

Observation 3: relationship 
between size and time only 
predictable for large sizes

compound(1) took 2.26e-06 seconds (441,696.12/sec)
compound(10) took 2.31e-06 seconds (433,839.48/sec)
compound(100) took 6.59e-06 seconds (151,676.02/sec)
compound(1000) took 5.02e-05 seconds (19,938.59/sec)
compound(10000) took 5.10e-04 seconds (1,961.80/sec)
compound(100000) took 5.14e-03 seconds (194.46/sec)
compound(1000000) took 4.79e-02 seconds (20.86/sec)
compound(10000000) took 4.46e-01 seconds (2.24/sec)

def compound(invest, interest, n_months):
total=0
for i in range(n_months):

total = total * interest + invest
return total
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Observation 1: Time grows with 
the input only when n_months
changes
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def sum_of(L):
total = 0.0
for elt in L:

total = total + elt
return total

L_N = [1]
for i in range(7):

L_N.append(L_N[-1]*10)

for N in L_N:
L = list(range(N))
t = time.perf_counter()
s = sum_of(L)
dt = time.perf_counter()-t
print(f"sum_of({N}) took {dt} seconds ({1/dt}/sec)")

6.0001 LECTURE 9

MEASURE TIME: sum over L
Observation 1: Size of the input is 
now the length of the list, not 
how big the element numbers are.

Observation 2: average time 
seems to increase by 10 as size of 
argument increases by 10

Observation 3: relationship 
between size and time only 
predictable for large sizes

Observation 4: Time seems 
comparable to  computation of 
compound
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# search each element one-by-one
def is_in(L, x):

for elt in L:
if elt==x: 

return True
return False

# search by bisecting the list (list should be sorted!)
def binary_search(L, x):

lo = 0
hi = len(L)
while hi-lo > 1:

mid = (hi+lo) // 2
if L[mid] <= x:

lo = mid
else:

hi = mid
return L[lo] == x

# search using built-in operator
x in L

6.0001 LECTURE 9

MEASURE TIME: find element in a list
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6.0001 LECTURE 9

MEASURE TIME: find element in a list

9/28/20

is_in(10000000) took 1.62e-01 seconds (6.16/sec)
9.57 times more than for 10 times fewer elements

binary(10000000) took 9.37e-06 seconds (106,761.64/sec)
1.40 times more than for 10 times fewer elements

builtin(10000000) took 5.64e-02 seconds (17.72/sec)
9.63 times more than for 10 times fewer elements

is_in(100000000) took 1.64e+00 seconds (0.61/sec)
10.12 times more than for 10 times fewer elements

binary(100000000) took 1.18e-05 seconds (84,507.09/sec)
1.26 times more than for 10 times fewer elements

builtin(100000000) took 5.70e-01 seconds (1.75/sec)
10.11 times more than for 10 times fewer elements

Observation 1: searching one-by-one grows by factor of 10, when L increases by 10
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6.0001 LECTURE 9

MEASURE TIME: find element in a list

9/28/20

is_in(10000000) took 1.62e-01 seconds (6.16/sec)
9.57 times more than for 10 times fewer elements
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Observation 1: searching one-by-one grows by factor of 10, when L increases by 10
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Observation 2: built-in function grows by factor of 10, when L increases by 10 
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6.0001 LECTURE 9

MEASURE TIME: find element in a list

9/28/20

is_in(10000000) took 1.62e-01 seconds (6.16/sec)
9.57 times more than for 10 times fewer elements

binary(10000000) took 9.37e-06 seconds (106,761.64/sec)
1.40 times more than for 10 times fewer elements

builtin(10000000) took 5.64e-02 seconds (17.72/sec)
9.63 times more than for 10 times fewer elements

is_in(100000000) took 1.64e+00 seconds (0.61/sec)
10.12 times more than for 10 times fewer elements

binary(100000000) took 1.18e-05 seconds (84,507.09/sec)
1.26 times more than for 10 times fewer elements

builtin(100000000) took 5.70e-01 seconds (1.75/sec)
10.11 times more than for 10 times fewer elements

Observation 1: searching one-by-one grows by factor of 10, when L increases by 10

Observation 3: binary search time seems almost independent of size
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6.0001 LECTURE 9

MEASURE TIME: find element in a list

9/28/20

is_in(10000000) took 1.62e-01 seconds (6.16/sec)
9.57 times more than for 10 times fewer elements

binary(10000000) took 9.37e-06 seconds (106,761.64/sec)
1.40 times more than for 10 times fewer elements

builtin(10000000) took 5.64e-02 seconds (17.72/sec)
9.63 times more than for 10 times fewer elements

is_in(100000000) took 1.64e+00 seconds (0.61/sec)
10.12 times more than for 10 times fewer elements

binary(100000000) took 1.18e-05 seconds (84,507.09/sec)
1.26 times more than for 10 times fewer elements

builtin(100000000) took 5.70e-01 seconds (1.75/sec)
10.11 times more than for 10 times fewer elements

Observation 1: searching one-by-one grows by factor of 10, when L increases by 10

Observation 4: binary search much faster than is_in, especially on larger problems

6.100L Lecture 22

Observation 3: binary search time seems almost independent of size

Observation 2: built-in function grows by factor of 10, when L increases by 10 
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6.0001 LECTURE 9

MEASURE TIME: find element in a list

9/28/20

is_in(10000000) took 1.62e-01 seconds (6.16/sec)
9.57 times more than for 10 times fewer elements

binary(10000000) took 9.37e-06 seconds (106,761.64/sec)
1.40 times more than for 10 times fewer elements

builtin(10000000) took 5.64e-02 seconds (17.72/sec)
9.63 times more than for 10 times fewer elements

is_in(100000000) took 1.64e+00 seconds (0.61/sec)
10.12 times more than for 10 times fewer elements

binary(100000000) took 1.18e-05 seconds (84,507.09/sec)
1.26 times more than for 10 times fewer elements

builtin(100000000) took 5.70e-01 seconds (1.75/sec)
10.11 times more than for 10 times fewer elements

Observation 1: searching one-by-one grows by factor of 10, when L increases by 10

Observation 5: is_in is slightly slower than using Python’s “in” capability
6.100L Lecture 22

Observation 4: binary search much faster than is_in, especially on larger problems

Observation 3: binary search time seems almost independent of size

Observation 2: built-in function grows by factor of 10, when L increases by 10 
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6.0001 LECTURE 9

MEASURE TIME: find element in a list

So we have seen 
computations where 
time seems very 
different
• Constant time
• Linear in size of

argument
• Something less than

linear?

6.100L Lecture 22

def is_in(L, x):
for elt in L:

if elt==x: 
return True

return False

def binary_search(L, x):
lo = 0
hi = len(L)
while hi-lo > 1:

mid = (hi+lo) // 2
if L[mid] <= x:

lo = mid
else:

hi = mid
return L[lo] == x
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def diameter(L):
farthest_dist = 0
for i in range(len(L)):

for j in range(i+1, len(L)):
p1 = L[i]
p2 = L[j]
dist = math.sqrt((p1[0]-p2[0])**2+(p1[1]-p2[1])**2)
if dist > farthest_dist:

farthest_dist = dist
return farthest_dist

6.0001 LECTURE 9

MEASURE TIME: diameter function

6.100L Lecture 22

L=[(cos(0), sin(0)),
(cos(1), sin(1)), 
(cos(2), sin(2)), ... ] #example numbers
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def diameter(L):
farthest_dist = 0
for i in range(len(L)):

for j in range(i+1, len(L)):
p1 = L[i]
p2 = L[j]
dist = math.sqrt((p1[0]-p2[0])**2+(p1[1]-p2[1])**2)
if dist > farthest_dist:

farthest_dist = dist
return farthest_dist

6.0001 LECTURE 9

MEASURE TIME: diameter function

6.100L Lecture 22
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def diameter(L):
farthest_dist = 0
for i in range(len(L)):

for j in range(i+1, len(L)):
p1 = L[i]
p2 = L[j]
dist = math.sqrt((p1[0]-p2[0])**2+(p1[1]-p2[1])**2)
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6.0001 LECTURE 9

MEASURE TIME: diameter function
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def diameter(L):
farthest_dist = 0
for i in range(len(L)):

for j in range(i+1, len(L)):
p1 = L[i]
p2 = L[j]
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6.0001 LECTURE 9

MEASURE TIME: diameter function
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def diameter(L):
farthest_dist = 0
for i in range(len(L)):

for j in range(i+1, len(L)):
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6.0001 LECTURE 9

MEASURE TIME: diameter function
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def diameter(L):
farthest_dist = 0
for i in range(len(L)):

for j in range(i+1, len(L)):
p1 = L[i]
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dist = math.sqrt((p1[0]-p2[0])**2+(p1[1]-p2[1])**2)
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MEASURE TIME: diameter function
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def diameter(L):
farthest_dist = 0
for i in range(len(L)):

for j in range(i+1, len(L)):
p1 = L[i]
p2 = L[j]
dist = math.sqrt((p1[0]-p2[0])**2+(p1[1]-p2[1])**2)
if dist > farthest_dist:

farthest_dist = dist
return farthest_dist

6.0001 LECTURE 9

MEASURE TIME: diameter function
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 Gets much slower as size of input grows
 Quadratic:  for list of size len(L), does len(L)/2 operations

per element on average
 len(L) x len(L)/2 operations — worse than linear growth

def diameter(L):
farthest_dist = 0
for i in range(len(L)):

for j in range(i+1, len(L)):
p1 = L[i]
p2 = L[j]
dist = math.sqrt((p1[0]-p2[0])**2+(p1[1]-p2[1])**2)
if dist > farthest_dist:

farthest_dist = dist
return farthest_dist

6.0001 LECTURE 9

MEASURE TIME: diameter function

6.100L Lecture 22
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6.100L Lecture 22

PLOT OF INPUT SIZE vs. TIME TO RUN

is_in
binary_search

diameter

linear logarithmic

quadratic
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TWO DIFFERENT MACHINES
My old laptop My old desktop

Observation 1: even for the same code, the actual machine may affect speed.

~2x slower for large problems

Observation 2: Looking only at the relative increase in run time from a prev run, 
if input is n times as big, the run time is approx. n times as long.
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6.0001 LECTURE 9

DON’T GET ME WRONG!

 Timing is a critical tool to assess the performance of programs
 At the end of the day, it is irreplaceable for real-world

assessment

 But we will see a complementary tool (asymptotic complexity)
that has other advantages
 A priori evaluation (before writing or running code)
 Assesses algorithm independent of machine and

implementation (what is intrinsic efficiency of algorithm?)
 Provides direct insight into the design of efficient

algorithms

6.100L Lecture 22
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COUNTING
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6.0001 LECTURE 8

COUNT OPERATIONS

 Assume these steps take
constant time:
• Mathematical operations
• Comparisons
• Assignments
• Accessing objects in

memory
 Count number of these

operations executed as
function of size of input

def convert_to_km(m):

return m * 1.609 

def sum_of(L):
total = 0
for i in L:

total += i
return total

sum_of 1+len(L)*3+1 = 3*len(L)+2 ops

6.100L Lecture 22

convert_to_km 2 ops
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6.0001 LECTURE 9

COUNT OPERATIONS: is_in

def is_in_counter(L, x):
global count
count += 1 #return of value
for elt in L:

count += 2 # set elt, if == test
if elt==x: 

return True
return False

6.100L Lecture 22
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6.0001 LECTURE 9

COUNT OPERATIONS: is_in

def is_in_counter(L, x):
global count
count += 1 
for elt in L:

count += 2
if elt==x:

return True
return False

6.100L Lecture 22
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6.0001 LECTURE 9

COUNT OPERATIONS: 
binary search

def binary_search_counter(L, x):
global count
lo = 0
hi = len(L)
count += 3
while hi-lo > 1:

count += 2
mid = (hi+lo) // 2
count += 3 
if L[mid] <= x:

lo = mid
else:

hi = mid
count += 3

count += 3
return L[lo] == x

6.100L Lecture 22
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6.0001 LECTURE 9

COUNT OPERATIONS

10/5/20

is_in testing
for  1 element, is_in used 9 operations
for  10 element, is_in used 37 operations
for  100 element, is_in used 307 operations
for  1000 element, is_in used 3007 operations
for  10000 element, is_in used 30007 operations
for  100000 element, is_in used 300007 operations
for  1000000 element, is_in used 3000007 operations

binary_search testing
for  1 element, binary search used 15 operations
for  10 element, binary search used 85 operations
for  100 element, binary search used 148 operations
for  1000 element, binary search used 211 operations
for  10000 element, binary search used 295 operations
for  100000 element, binary search used 358 operations
for  1000000 element, binary search used 421 operations

Observation 1: number of 
operations for is_in increases by 
10 as size increases by 10

Observation 2: but number 
of operations for binary 
search grows much more 
slowly. Unclear at what rate.

6.100L Lecture 22
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PLOT OF INPUT SIZE vs. OPERATION COUNT

6.100L Lecture 22
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PROBLEMS WITH TIMING AND COUNTING

 Timing the exact running time of the program
• Depends on machine
• Depends on implementation
• Small inputs don’t show growth

 Counting the exact number of steps
• Gets us a formula!
• Machine independent, which is good
• Depends on implementation
• Multiplicative/additive constants are irrelevant for large inputs

 Want to:
 evaluate algorithm
 evaluate scalability
 evaluate in terms of input size

6.100L Lecture 22
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EFFICIENCY IN TERMS OF INPUT: BIG-PICTURE
RECALL mysum (one loop) and square (nested loops)

 mysum(x)
 What happened to the program efficiency as x increased?
 10 times bigger x meant the program

 Took approx. 10 times as long to run
 Did approx. 10 times as many ops

 Express it in an “order of” way vs. the input variable: efficiency = Order of x

 square(x)
 What happened to the program efficiency as x increased?
 2 times bigger x meant the program

 Took approx. 4 times as long to run
 Did approx. 4 times as many ops

 10 times bigger x meant the program
 Took approx. 100 times as long to run
 Did approx. 100 times as many ops

 Express it in an “order of” way vs. the input variable: efficiency = Order of x2

6.100L Lecture 22
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ORDER of GROWTH
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ORDERS OF GROWTH

 It’s a notation
 Evaluates programs when input is very big
 Expresses the growth of program’s run time
 Puts an upper bound on growth
 Do not need to be precise: “order of” not “exact” growth

 Focus on the largest factors in run time (which section of
the program will take the longest to run?)

6.100L Lecture 22
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A BETTER WAY
A GENERALIZED WAY WITH APPROXIMATIONS

 Use the idea of counting operations in an algorithm, but not
worry about small variations in implementation
 When x is big, 3x+4 and 3x and x are pretty much the same!
 Don’t care about exact value: ops = 1+x(2+1)
 Express it in an “order of” way vs. the input: ops = Order of x

 Focus on how algorithm performs when size of problem gets
arbitrarily large

 Relate time needed to complete a computation against the
size of the input to the problem

 Need to decide what to measure. What is the input?

6.100L Lecture 22
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6.0001 LECTURE 8

WHICH INPUT TO USE TO MEASURE EFFICIENCY

 Want to express efficiency in terms of input, so need to 
decide what is your input

 Could be an integer 
-- convert_to_km(x)

 Could be length of list 
-- list_sum(L)

 You decide when multiple parameters to a function
-- is_in(L, e)
 Might be different depending on which input you consider

6.100L Lecture 22
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6.0001 LECTURE 8

DIFFERENT INPUTS CHANGE HOW 
THE PROGRAM RUNS

 A function that searches for an element in a list
def is_in(L, e):

for i in L:
if i == e:

return True
return False

 Does the program take longer to run as e increases?
 No

6.100L Lecture 22
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6.0001 LECTURE 8

DIFFERENT INPUTS CHANGE HOW 
THE PROGRAM RUNS

 A function that searches for an element in a list
def is_in(L, e):

for i in L:
if i == e:

return True
return False

 Does the program take longer to run as L increases?
 What if L has a fixed length and its elements are big numbers?

 No
 What if L has different lengths?

 Yes!

6.100L Lecture 22
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6.0001 LECTURE 8

DIFFERENT INPUTS CHANGE HOW 
THE PROGRAM RUNS

 A function that searches for an element in a list
def is_in(L, e):

for i in L:
if i == e:

return True
return False

 When e is first element in the list 
 BEST CASE
 When look through about half of the elements in list
 AVERAGE CASE
 When e is not in list 
 WORST CASE
 Want to measure this behavior in a general way

6.100L Lecture 22
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6.0001 LECTURE 8

ASYMPTOTIC GROWTH

 Goal: describe how time grows as size of input grows
 Formula relating input to number of operations

 Given an expression for the number of operations needed to
compute an algorithm, want to know asymptotic behavior as size
of problem gets large
 Want to put a bound on growth
 Do not need to be precise: “order of” not “exact” growth

 Will focus on term that grows most rapidly
 Ignore additive and multiplicative constants, since want to know how

rapidly time required increases as we increase size of input

 This is called order of growth
 Use mathematical notions of “big O” and “big Θ”

Big Oh  and Big Theta
6.100L Lecture 22
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BIG O Definition 

𝑔𝑔(𝑥𝑥) = 𝑥𝑥

Not an upper bound; as 𝑥𝑥 → ∞
f(x) will always exceed it

4𝑥𝑥2 > 3𝑥𝑥2 + 20𝑥𝑥 + 1∀𝑥𝑥 > 20.04

 Suppose  some code runs in 
𝑓𝑓(𝑥𝑥) = 3𝑥𝑥2 + 20𝑥𝑥 + 1 steps
Think of this as the formula from 
counting the number of ops.

 Big OH is a way to upper bound the 
growth of any function

 f(x) = O(g(x)) means that g(x) times 
some constant eventually always 
exceeds f(x)
Eventually means above some 
threshold value of x

Crossover

Never 
cross 
again!

3𝑥𝑥2 + 20𝑥𝑥 + 1 = 𝑂𝑂(𝑥𝑥2)

6.100L Lecture 22
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BIG O FORMALLY
 A big Oh bound is an upper bound on the growth of some function
 𝑓𝑓(𝑥𝑥) = 𝑂𝑂(𝒈𝒈(𝒙𝒙)) means there exist 

constants 𝒄𝒄𝟎𝟎,𝒙𝒙𝟎𝟎 for which 𝒄𝒄𝟎𝟎𝒈𝒈(𝒙𝒙) ≥ 𝒇𝒇(𝒙𝒙) for all 𝑥𝑥 > 𝒙𝒙𝟎𝟎

Example:  𝑓𝑓(𝑥𝑥) = 3𝑥𝑥2 + 20𝑥𝑥 + 1

𝑓𝑓(𝑥𝑥) = 𝑂𝑂(𝒙𝒙𝟐𝟐) ,because 𝟒𝟒 𝒙𝒙𝟐𝟐 > 𝟑𝟑𝒙𝒙𝟐𝟐 + 𝟐𝟐𝟐𝟐𝟐𝟐 + 𝟏𝟏∀𝑥𝑥 ≥ 𝟐𝟐𝟐𝟐
(𝒄𝒄𝟎𝟎 = 𝟒𝟒,𝒙𝒙𝟎𝟎 = 𝟐𝟐𝟐𝟐.𝟎𝟎𝟎𝟎)

0 <= x <= 30 0 <= x <= 100

Crossover at 
x=20.04

These lines
will never
cross again

orange > blue 
for all x > 20.04)

6.100L Lecture 22
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0 <= x <= 100

BIG Θ Definition

 A big Θ bound is a lower and upper bound on the growth of some function
Suppose  𝑓𝑓(𝑥𝑥) = 3𝑥𝑥2 − 20𝑥𝑥 − 1

𝒇𝒇(𝒙𝒙) = Θ(𝒈𝒈(𝒙𝒙)) means:
there exist constants 𝒄𝒄𝟎𝟎, 𝑥𝑥0 for which 𝒄𝒄𝟎𝟎𝒈𝒈(𝒙𝒙) ≥ 𝒇𝒇(𝒙𝒙) for all 𝑥𝑥 > 𝒙𝒙𝟎𝟎
and             constants 𝒄𝒄𝟏𝟏, 𝑥𝑥1 for which 𝒄𝒄𝟏𝟏𝒈𝒈(𝒙𝒙) ≤ 𝒇𝒇(𝒙𝒙) for all 𝑥𝑥 > 𝒙𝒙𝟏𝟏

 Example, 𝒇𝒇(𝒙𝒙) = Θ(𝒙𝒙𝟐𝟐) because    𝟒𝟒𝒙𝒙𝟐𝟐 > 𝟑𝟑𝒙𝒙𝟐𝟐 − 𝟐𝟐𝟐𝟐𝟐𝟐 − 𝟏𝟏 ∀𝑥𝑥 ≥ 𝟎𝟎 (𝒄𝒄𝟎𝟎 = 𝟒𝟒,𝒙𝒙𝟎𝟎 = 𝟎𝟎)
and  𝟐𝟐𝒙𝒙𝟐𝟐 < 𝟑𝟑𝒙𝒙𝟐𝟐 − 𝟐𝟐𝟐𝟐𝟐𝟐 − 𝟏𝟏 ∀𝑥𝑥 ≥ 𝟐𝟐𝟐𝟐 (𝒄𝒄𝟏𝟏 = 𝟐𝟐,𝒙𝒙𝟏𝟏 = 𝟐𝟐𝟐𝟐.𝟎𝟎𝟎𝟎)

These lines
will never
cross again

orange > blue 
for all x > 0

blue > green 
for all x > 20.04

3𝑥𝑥2 − 20𝑥𝑥 − 1 = 𝜃𝜃(𝑥𝑥2)

6.100L Lecture 22
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Θ vs O

 In practice, Θ bounds are preferred, because they are “tight”
For example: 𝑓𝑓(𝑥𝑥) = 3𝑥𝑥2 − 20𝑥𝑥 − 1

 𝑓𝑓 𝑥𝑥 = 𝑂𝑂 𝑥𝑥2 = 𝑂𝑂 𝑥𝑥3 = 𝑂𝑂(2𝑥𝑥) and anything higher order
because they all upper bound it

 𝒇𝒇 𝒙𝒙 = 𝜣𝜣 𝒙𝒙𝟐𝟐

≠ Θ 𝑥𝑥3 ≠ Θ 2𝑥𝑥 and anything higher order because they 
upper bound but not lower bound it 

6.100L Lecture 22
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6.0001 LECTURE 8

SIMPLIFICATION EXAMPLES

 Drop constants and multiplicative factors
 Focus on dominant term

: n2 + 2n + 2

: 3x2 + 100000x + 31000

: log(a) + a + 4

Θ(n2)
Θ(x2)
Θ(a)

6.100L Lecture 22
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BIG  IDEA

Express Theta in terms of 
the input.
Don’t just use n all the time!

6.100L Lecture 22
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YOU TRY IT!
: 1000*log(x) + x

: n2log(n) + n3

: log(y) + 0.000001y

: 2b + 1000a2 + 100*b2 + 0.0001a3

6.100L Lecture 22

Θ(x)
Θ(n3)
Θ(y)
Θ(2b)
Θ(a3)
Θ(2b+a3)
All could be ok, depends on the input we care about

50



6.0001 LECTURE 8

USING Θ TO EVALUATE YOUR 
ALGORITHM

def fact_iter(n):
"""assumes n an int >= 0"""
answer = 1
while n > 1:

answer *= n
n -= 1

return answer

 Number of steps:
 Worst case asymptotic complexity:

 Ignore additive constants
 2 doesn’t matter when n is big

 Ignore multiplicative constants
 5 doesn’t matter if just want to know how increasing n changes time

needed

5n + 2

Θ(n)

6.100L Lecture 22
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6.0001 LECTURE 8

COMBINING COMPLEXITY CLASSES
LOOPS IN SERIES
 Analyze statements inside functions to get order of growth
 Apply some rules, focus on dominant term

 Law of Addition for Θ():
 Used with sequential statements
 Θ(𝑓𝑓(𝑛𝑛)) + Θ(𝑔𝑔(𝑛𝑛)) = Θ(𝑓𝑓(𝑛𝑛) + 𝑔𝑔(𝑛𝑛))

 For example,
for i in range(n):

print('a')
for j in range(n*n):

print('b')

is Θ(𝑛𝑛) + Θ(𝑛𝑛 ∗ 𝑛𝑛) = Θ(𝑛𝑛 + 𝑛𝑛2) = Θ(𝑛𝑛2) because of   
dominant 𝑛𝑛2 term

Θ(n)

Θ(n2)

6.100L Lecture 22
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6.0001 LECTURE 8

COMBINING COMPLEXITY CLASSES
NESTED LOOPS
 Analyze statements inside functions to get order of growth
 Apply some rules, focus on dominant term

 Law of Multiplication for Θ():
 Used with nested statements/loops
 Θ 𝑓𝑓 𝑛𝑛 ∗ Θ(𝑔𝑔(𝑛𝑛)) = Θ(𝑓𝑓 𝑛𝑛 ∗ 𝑔𝑔(𝑛𝑛))

 For example,
for i in range(n):

for j in range(n//2):
print('a')

 Θ(𝑛𝑛) × Θ(𝑛𝑛) = Θ(𝑛𝑛 × 𝑛𝑛) = Θ(𝑛𝑛2)
 Outer loop runs n times and the inner loop runs n times

for every outer loop iteration.

Θ(n)
Θ(n) for each outer loop iteration

6.100L Lecture 22
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ANALYZE COMPLEXITY

 What is the Theta complexity of this program?

def f(x):
answer = 1
for i in range(x):

for j in range(i,x):
answer += 2

return answer

 Θ(1) + Θ(x)* Θ(x)* Θ(1) + Θ(1)
 Overall complexity is Θ(x2) by rules of addition and

multiplication

6.100L Lecture 22

Outer loop is Θ(x)
Inner loop is Θ(x)
Everything else is  Θ(1)
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YOU TRY IT!
 What is the Theta complexity of this program? Careful to 

describe in terms of input 
(hint: what matters with a list, size of elems of length?)

def f(L):
Lnew = []
for i in L:

Lnew.append(i**2)
return Lnew

6.100L Lecture 22

ANSWER:
Loop: Θ(len(L))
f is Θ(len(L))
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YOU TRY IT!
 What is the Theta complexity of this program?

def f(L, L1, L2):
""" L, L1, L2 are the same length """
inL1 = False
for i in range(len(L)):

if L[i] == L1[i]:
inL1 = True

inL2 = False
for i in range(len(L)):

if L[i] == L2[i]:
inL2 = True

return inL1 and inL2

6.100L Lecture 22

ANSWER:
Loop: Θ(len(L)) + Θ(len(L))
f is Θ(len(L)) or Θ(len(L1)) or Θ(len(L2))
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6.0001 LECTURE 8

COMPLEXITY CLASSES

We want to design algorithms that are as 
close to top of this hierarchy as possible

6.100L Lecture 22

 Θ(1) denotes constant running time
 Θ(log n) denotes logarithmic running time
 Θ(n) denotes linear running time
 Θ(n log n) denotes log-linear running time
 Θ(nc) denotes polynomial running time

(c is a constant)
 Θ(cn) denotes exponential running time

(c is a constant raised to a power based on input size)
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COMPLEXITY GROWTH

CLASS N = 10 N = 100 N = 1000 N = 1000000

Constant 1 1 1 1

Logarithmic 1 2 3 6

Linear 10 100 1000 1000000

Log-linear 10 200 3000 6000000

Polynomial 100 10000 1000000 1000000000000

Exponential 1024 12676506
00228229
40149670
3205376

1071508607186267320948425
0490600018105614048117055
3360744375038837035105112
4936122493198378815695858
1275946729175531468251871
4528569231404359845775746
9857480393456777482423098
5421074605062371141877954
1821530464749835819412673
9876755916554394607706291
4571196477686542167660429
8316526243868372056680693
76

Good Luck!!

6.100L Lecture 22
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SUMMARY

 Timing is machine/implementation/algorithm dependent
 Counting ops is implementation/algorithm dependent
 Order of growth is algorithm dependent

 Compare efficiency of algorithms
• Notation that describes growth
• Lower order of growth is better
• Independent of machine or specific implementation

 Using Theta
• Describe asymptotic order of growth
• Asymptotic notation
• Upper bound and a lower bound

6.100L Lecture 22
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