TIMING PROGRAMS,
COUNTING OPERATIONS

(download slides and .py files to follow along)

6.100L Lecture 21
Ana Bell

WRITING EFFICIENT PROGRAMS

= So far, we have emphasized correctness. It is the first
thing to worry about! But sometimes that is not enough.

" Problems can be very complex

= But data sets can be
very large: in 2014
Google served
30,000,000,000,000
pages covering
100,000,000 GB
of data

EFFICIENCY IS IMPORTANT

= Separate time and space efficiency of a program

* Tradeoff between them: can use up a bit more memory
to store values for quicker lookup later

» Think Fibonacci recursive vs. Fibonacci with memoization

= Challenges in understanding efficiency
= A program can be implemented in many different ways

* You can solve a problem using only a handful of different
algorithms

= \Want to separate choice of implementation from choice
of more abstract algorithm

3
6.100L Lecture 21

EVALUATING PROGRAMS

[' Measure with a timer

= Count the operations

= Abstract notion of order of growth

4
6.100L Lecture 21

ASIDE on MODULES

= A module is a set of python definitions in a file

= Python provides many useful modules: math, plotting/graphing, random
sampling for probability, statistical tools, many others

= You first need to “import” the module into your environment

import time
import random
import dateutil
import math

= Call functions from inside the module using the module’s name
and dot notation

math.sin (math.pi/2)

TIMING

TIMING A PROGRAM

= Use time module

= Recall that

importing means to
bring in that class
into your own file

= Start clock
= Call function

= Stop clock

>

import time

def ¢ to f(c):

return c¢*9.0/5 + 32 X

c,'\(\c’e ,&g’\g

\

(\66

O
e QOC\\ :
e

yot

tstart = time.time ()

c to f£(37)
dt = time.time () - tstart
print (dt, "s,")

7
6.100L Lecture 21

TIMNGc to £

= \ery fast, can’t even time it accurately

c_to_f(1) took 0.0 seconds
c_to_f(10) took 0.0 seconds
c_to_f(100) took 0.0 seconds
c_to_f(1000) took 0.0 seconds
c_to_f(10000) took 0.0 seconds
c_to_f(100000) took 0.0 seconds
c_to_f(1000000) took 0.0 seconds
c_to_f(10000000) took 0.0 seconds

TIMING mysum

= As the input increases, the time it takes also increases

= Pattern?
= 0.009t00.05t00.5to 5to ??

mysum(1l) took 0.0 sec

mysum(10) took 0.0 sec

mysum(100) took 0.0 sec

mysum(1000) took 0.0 sec

mysum(10000) took|0.0019927024841308594 sec
mysum(100000) took|©.009970903396606445 sec
mysum(1000000) took|0.05089521408081055 sec
mysum(10000000) took|0.4966745376586914 sec
mysum(100000000) took|5.688449382781982 sec

9
6.100L Lecture 21

TIMING square

= As the input increases the time it takes also increases

" square called with 100000 did not finish within a reasonable
amount of time

=" Maybe we can guess a pattern if we are patient for one more
round?

square(1l) took 0.0 sec

square(10) took 0.0 sec

square(100) took 0.0 sec

square(1000) took 0.06244492530822754 sec
square(10000) took 5.553335428237915 sec

10

TIMING PROGRAMS IS
INCONSISTENT

= GOAL: to evaluate different algorithms
&/ " Running time should vary between algorithms
¥ = Running time should not vary between implementations
¥ = Running time should not vary between computers
¥ = Running time should not vary between languages
)¢ ="Running time is should be predictable for small inputs

= Time varies for different inputs but
cannot really express a relationship
between inputs and time needed

=Can only be measured a posteriori

11
6.100L Lecture 21

COUNTING

COUNTING
OPERATIONS

= Assume these steps take
constant time:
 Mathematical operations
* Comparisons
* Assignments

c_to f> 3 o0ps
def ¢ to f
return

(

c) :

2) OQCD

c*9.0/5 + 32

mysum =2 1+(x+1)*(1+2) = 3x+4 ops
def mysum (x

total

/\‘OQ

0

for |1 1n range (x+1) :

\0%° | e® total += 1

* Accessing objects in memory

= Count number of
operations executed as
function of size of input

QO o®
> return total >
fLOQS
square =2 1+n*(1)*n*(1+2) =3n% + 1 ops
def square(n) :
L of [Sgsum = 0 A OF
for |i in range(n): A OF
@@é o for|j in range (n):
Q(\ .\((\G —
\o° ot sgsum += 1

o
\O return sgsum

13
6.100L Lecture 21

9) OQS

COUNTING ¢ to f

= No matter what the input is, the number of operations is the
same

c_to_f(100): 3 ops, 1.0 x more
c_to_f(1000): 3 ops, 1.0 x more
c_to_f(10000): 3 ops, 1.0 x more
c_to _f(100000): 3 ops, 1.0 x more
c_to f(1000000): 3 ops, 1.0 x more
c_to_f(10000000): 3 ops, 1.0 x more

14
6.100L Lecture 21

COUNTING mysum

" As the input increases by 10, the number if operations ran is
approx. 10 times more.

mysum(100): 304 ops, 1.0 X more

mysum(1000): 3004 ops, 9.88158 x more
mysum(10000): 30004 ops, 9.98802 x more
mysum(100000): 300004 ops, 9.9988 x more
mysum(1000000): 3000004 ops, 9.99988 x more
mysum(10000000): 30000004 ops,| 9.99999 x more

15
6.100L Lecture 21

COUNTING square

= As the input increases
by 10, the number of
operations is approx.
100 times more.

= As the input increases
by 2, the number of
operations is approx.
4 times more.

square(1l): 5 ops, 1.0 x more
square(10): 311 ops, 62.2 X more

square(100):
square(1000) :

square(10000) :

30101 ops, 96.78778 x more

3001001 ops, 99.69772 x more

300010001 ops,| 99.96998 x more

square(128): 49281 ops, 1.0 x more

square(256):
square(512):

square(1024):
square(2048):
square(4096) :
square(8192):

16
6.100L Lecture 21

196865 ops, 3.99474 x more
786945 ops, 3.99738 x more

3146753 ops, 3.99869 x more
12584961 ops, 3.99935 x more
50335745 ops, 3.99967 x more

201334785 ops,| 3.99984 x more

COUNTING OPERATIONS IS
INDEPENDENT OF COMPUTER
VARIATIONS, BUT ...

= GOAL: to evaluate different algorithms
& = Running “time” should vary between algorithms
¥ = Running “time” should not vary between implementations
Vv - Running “time” should not vary between computers
Vv - Running “time” should not vary between languages
Vv - Running “time” is should be predictable for small inputs
= No real definition of which operations to count

v

= Count varies for different inputs and
can derive a relationship
between inputs and the count

6.100L Lecture 21

.. STILL NEED A BETTER WAY

* Timing and counting evaluate implementations

* Timing and counting evaluate machines

* Want to evaluate algorithm
* Want to evaluate scalability

* Want to evaluate in terms of input size

18
6.100L Lecture 21

MITO;)enCourseWare
https://ocw.mit.edu

6.100L Introduction to Computer Science and Programming Using Python
Fall 2022

Forinformation aboutciting these materials orourTerms ofUse,visit: https://ocw.mit.edu/terms.

19

https://ocw.mit.edu
https://ocw.mit.edu/terms

	TIMING PROGRAMS, COUNTING OPERATIONS�(download slides and .py files to follow along)
	WRITING EFFICIENT PROGRAMS
	EFFICIENCY IS IMPORTANT
	EVALUATING PROGRAMS
	ASIDE on MODULES
	TIMING
	TIMING A PROGRAM
	TIMNG c_to_f
	TIMING mysum
	TIMING square
	TIMING PROGRAMS IS INCONSISTENT
	COUNTING
	COUNTING �OPERATIONS
	COUNTING c_to_f
	COUNTING mysum
	COUNTING square
	COUNTING OPERATIONS IS INDEPENDENT OF COMPUTER VARIATIONS, BUT …
	… STILL NEED A BETTER WAY
	cover-slides.pdf
	cover_h.pdf
	Blank Page

