TIMING PROGRAMS,
COUNTING OPERATIONS

(download slides and .py files to follow along)
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Ana Bell



WRITING EFFICIENT PROGRAMS

= So far, we have emphasized correctness. It is the first
thing to worry about! But sometimes that is not enough.

" Problems can be very complex

= But data sets can be
very large: in 2014
Google served
30,000,000,000,000
pages covering
100,000,000 GB
of data



EFFICIENCY IS IMPORTANT

= Separate time and space efficiency of a program

* Tradeoff between them: can use up a bit more memory
to store values for quicker lookup later

» Think Fibonacci recursive vs. Fibonacci with memoization

= Challenges in understanding efficiency
= A program can be implemented in many different ways

* You can solve a problem using only a handful of different
algorithms

= \Want to separate choice of implementation from choice
of more abstract algorithm
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EVALUATING PROGRAMS

[' Measure with a timer

= Count the operations

= Abstract notion of order of growth
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ASIDE on MODULES

= A module is a set of python definitions in a file

= Python provides many useful modules: math, plotting/graphing, random
sampling for probability, statistical tools, many others

= You first need to “import” the module into your environment

import time
import random
import dateutil
import math

= Call functions from inside the module using the module’s name
and dot notation

math.sin (math.pi/2)



TIMING



TIMING A PROGRAM

= Use time module

= Recall that

importing means to
bring in that class
into your own file

= Start clock
= Call function

= Stop clock

>

import time

def ¢ to f(c):

return c¢*9.0/5 + 32 X

c,'\(\c’e ,&g’\g

\
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O
e QOC\\ :
e

yot

tstart = time.time ()

c to f£(37)
dt = time.time () - tstart
print (dt, "s,")
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TIMNGc to £

= \ery fast, can’t even time it accurately

c_to_f(1) took 0.0 seconds
c_to_f(10) took 0.0 seconds
c_to_f(100) took 0.0 seconds
c_to_f(1000) took 0.0 seconds
c_to_f(10000) took 0.0 seconds
c_to_f(100000) took 0.0 seconds
c_to_f(1000000) took 0.0 seconds
c_to_f(10000000) took 0.0 seconds



TIMING mysum

= As the input increases, the time it takes also increases

= Pattern?
= 0.009t00.05t00.5to 5to ??

mysum(1l) took 0.0 sec

mysum(10) took 0.0 sec

mysum(100) took 0.0 sec

mysum(1000) took 0.0 sec

mysum(10000) took|0.0019927024841308594 sec
mysum(100000) took|©.009970903396606445 sec
mysum(1000000) took|0.05089521408081055 sec
mysum(10000000) took|0.4966745376586914 sec
mysum(100000000) took|5.688449382781982 sec
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TIMING square

= As the input increases the time it takes also increases

" square called with 100000 did not finish within a reasonable
amount of time

=" Maybe we can guess a pattern if we are patient for one more
round?

square(1l) took 0.0 sec

square(10) took 0.0 sec

square(100) took 0.0 sec

square(1000) took 0.06244492530822754 sec
square(10000) took 5.553335428237915 sec
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TIMING PROGRAMS IS
INCONSISTENT

= GOAL: to evaluate different algorithms
&/ " Running time should vary between algorithms
¥ = Running time should not vary between implementations
¥ = Running time should not vary between computers
¥ = Running time should not vary between languages
)¢ ="Running time is should be predictable for small inputs

= Time varies for different inputs but
cannot really express a relationship
between inputs and time needed

=Can only be measured a posteriori
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COUNTING



COUNTING
OPERATIONS

= Assume these steps take
constant time:
 Mathematical operations
* Comparisons
* Assignments

c_to f> 3 o0ps
def ¢ to f
return

(

c) :

2) OQCD

c*9.0/5 + 32

mysum =2 1+(x+1)*(1+2) = 3x+4 ops
def mysum (x

total

/\‘OQ

0

for |1 1n range (x+1) :

\0%° | e® total += 1

* Accessing objects in memory

= Count number of
operations executed as
function of size of input

QO o®
> return total >
fLOQS
square =2 1+n*(1)*n*(1+2) =3n% + 1 ops
def square(n) :
L of [ Sgsum = 0 A OF
for |i in range(n): A OF
@@é o for|j in range (n):
Q(\ .\((\G —
\o° ot sgsum += 1

o
\O return sgsum
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COUNTING ¢ to f

= No matter what the input is, the number of operations is the
same

c_to_f(100): 3 ops, 1.0 x more
c_to_f(1000): 3 ops, 1.0 x more
c_to_f(10000): 3 ops, 1.0 x more
c_to _f(100000): 3 ops, 1.0 x more
c_to f(1000000): 3 ops, 1.0 x more
c_to_f(10000000): 3 ops, 1.0 x more
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COUNTING mysum

" As the input increases by 10, the number if operations ran is
approx. 10 times more.

mysum(100): 304 ops, 1.0 X more

mysum(1000): 3004 ops, 9.88158 x more
mysum(10000): 30004 ops, 9.98802 x more
mysum(100000): 300004 ops, 9.9988 x more
mysum(1000000): 3000004 ops, 9.99988 x more
mysum(10000000): 30000004 ops,| 9.99999 x more
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COUNTING square

= As the input increases
by 10, the number of
operations is approx.
100 times more.

= As the input increases
by 2, the number of
operations is approx.
4 times more.

square(1l): 5 ops, 1.0 x more
square(10): 311 ops, 62.2 X more

square(100):
square(1000) :

square(10000) :

30101 ops, 96.78778 x more

3001001 ops, 99.69772 x more

300010001 ops,| 99.96998 x more

square(128): 49281 ops, 1.0 x more

square(256):
square(512):

square(1024):
square(2048):
square(4096) :
square(8192):
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196865 ops, 3.99474 x more
786945 ops, 3.99738 x more

3146753 ops, 3.99869 x more
12584961 ops, 3.99935 x more
50335745 ops, 3.99967 x more

201334785 ops,| 3.99984 x more




COUNTING OPERATIONS IS
INDEPENDENT OF COMPUTER
VARIATIONS, BUT ...

= GOAL: to evaluate different algorithms
& = Running “time” should vary between algorithms
¥ = Running “time” should not vary between implementations
Vv - Running “time” should not vary between computers
Vv - Running “time” should not vary between languages
Vv - Running “time” is should be predictable for small inputs
= No real definition of which operations to count

v

= Count varies for different inputs and
can derive a relationship
between inputs and the count
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.. STILL NEED A BETTER WAY

* Timing and counting evaluate implementations

* Timing and counting evaluate machines

* Want to evaluate algorithm
* Want to evaluate scalability

* Want to evaluate in terms of input size
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MITO;)enCourseWare
https://ocw.mit.edu

6.100L Introduction to Computer Science and Programming Using Python
Fall 2022

Forinformation aboutciting these materials orourTerms ofUse,visit: https://ocw.mit.edu/terms.
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