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WRITING EFFICIENT PROGRAMS

 So far, we have emphasized correctness. It is the first
thing to worry about! But sometimes that is not enough.
 Problems can be very complex

 But data sets can be
very large: in 2014
Google served
30,000,000,000,000
pages covering
100,000,000 GB
of data
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EFFICIENCY IS IMPORTANT

 Separate time and space efficiency of a program

 Tradeoff between them: can use up a bit more memory
to store values for quicker lookup later
 Think Fibonacci recursive vs. Fibonacci with memoization

 Challenges in understanding efficiency
 A program can be implemented in many different ways

 You can solve a problem using only a handful of different
algorithms

 Want to separate choice of implementation from choice
of more abstract algorithm
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EVALUATING PROGRAMS

 Measure with a timer
 Count the operations
 Abstract notion of order of growth
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ASIDE on MODULES

 A module is a set of python definitions in a file
 Python provides many useful modules: math, plotting/graphing, random

sampling for probability, statistical tools, many others

 You first need to “import” the module into your environment
import time
import random
import dateutil
import math

 Call functions from inside the module using the module’s name
and dot notation
math.sin(math.pi/2)
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TIMING
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TIMING A PROGRAM

 Use time module
 Recall that

importing means to
bring in that class
into your own file

 Start clock
 Call function
 Stop clock

import time

def c_to_f(c):

return c*9.0/5 + 32 

tstart = time.time()

c_to_f(37)

dt = time.time() - tstart

print(dt, "s,")
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TIMNG c_to_f

 Very fast, can’t even time it accurately
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TIMING mysum

 As the input increases, the time it takes also increases
 Pattern?

 0.009 to 0.05 to 0.5 to 5 to ??
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TIMING square

 As the input increases the time it takes also increases
 square called with 100000 did not finish within a reasonable

amount of time
 Maybe we can guess a pattern if we are patient for one more

round?
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TIMING PROGRAMS IS 
INCONSISTENT

 GOAL: to evaluate different algorithms
 Running time should vary between algorithms
 Running time should not vary between implementations
 Running time should not vary between computers
 Running time should not vary between languages
Running time is should be predictable for small inputs

 Time varies for different inputs but
cannot really express a relationship
between inputs and time needed
Can only be measured a posteriori
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COUNTING
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COUNTING 
OPERATIONS

 Assume these steps take
constant time:

• Mathematical operations
• Comparisons
• Assignments
• Accessing objects in memory

 Count number of
operations executed as
function of size of input

def c_to_f(c):
return c*9.0/5 + 32 

def mysum(x):
total = 0
for i in range(x+1):

total += i
return total

def square(n):
sqsum = 0
for i in range(n):

for j in range(n):
sqsum += 1

return sqsum
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mysum 1+(x+1)*(1+2) = 3x+4 ops

c_to_f 3 ops

square 1+n*(1)*n*(1+2) = 3n2 + 1 ops
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COUNTING c_to_f

 No matter what the input is, the number of operations is the
same
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COUNTING mysum

 As the input increases by 10, the number if operations ran is
approx. 10 times more.
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COUNTING square

 As the input increases
by 10, the number of
operations is approx.
100 times more.

 As the input increases
by 2, the number of
operations is approx.
4 times more.
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COUNTING OPERATIONS IS 
INDEPENDENT OF COMPUTER 
VARIATIONS, BUT …

 GOAL: to evaluate different algorithms
 Running “time” should vary between algorithms
 Running “time” should not vary between implementations
 Running “time” should not vary between computers
 Running “time” should not vary between languages
 Running “time” is should be predictable for small inputs
 No real definition of which operations to count

 Count varies for different inputs and
can derive a relationship
between inputs and the count

6.100L Lecture 21
17



… STILL NEED A BETTER WAY

• Timing and counting evaluate implementations
• Timing and counting evaluate machines

• Want to evaluate algorithm
• Want to evaluate scalability
• Want to evaluate in terms of input size
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