
TIMING PROGRAMS,
COUNTING OPERATIONS

(download slides and .py files to follow along)
6.100L Lecture 21

Ana Bell

1

WRITING EFFICIENT PROGRAMS

 So far, we have emphasized correctness. It is the first
thing to worry about! But sometimes that is not enough.
 Problems can be very complex

 But data sets can be
very large: in 2014
Google served
30,000,000,000,000
pages covering
100,000,000 GB
of data

6.100L Lecture 21
2

EFFICIENCY IS IMPORTANT

 Separate time and space efficiency of a program

 Tradeoff between them: can use up a bit more memory
to store values for quicker lookup later
 Think Fibonacci recursive vs. Fibonacci with memoization

 Challenges in understanding efficiency
 A program can be implemented in many different ways

 You can solve a problem using only a handful of different
algorithms

 Want to separate choice of implementation from choice
of more abstract algorithm

6.100L Lecture 21
3

EVALUATING PROGRAMS

 Measure with a timer
 Count the operations
 Abstract notion of order of growth

6.100L Lecture 21
4

6.0001 LECTURE 9

ASIDE on MODULES

 A module is a set of python definitions in a file
 Python provides many useful modules: math, plotting/graphing, random

sampling for probability, statistical tools, many others

 You first need to “import” the module into your environment
import time
import random
import dateutil
import math

 Call functions from inside the module using the module’s name
and dot notation
math.sin(math.pi/2)

6.100L Lecture 21
5

TIMING

6.100L Lecture 21
6

TIMING A PROGRAM

 Use time module
 Recall that

importing means to
bring in that class
into your own file

 Start clock
 Call function
 Stop clock

import time

def c_to_f(c):

return c*9.0/5 + 32

tstart = time.time()

c_to_f(37)

dt = time.time() - tstart

print(dt, "s,")

6.100L Lecture 21
7

TIMNG c_to_f

 Very fast, can’t even time it accurately

6.100L Lecture 21
8

TIMING mysum

 As the input increases, the time it takes also increases
 Pattern?

 0.009 to 0.05 to 0.5 to 5 to ??

6.100L Lecture 21
9

TIMING square

 As the input increases the time it takes also increases
 square called with 100000 did not finish within a reasonable

amount of time
 Maybe we can guess a pattern if we are patient for one more

round?

6.100L Lecture 21
10

6.0001 LECTURE 8

TIMING PROGRAMS IS
INCONSISTENT

 GOAL: to evaluate different algorithms
 Running time should vary between algorithms
 Running time should not vary between implementations
 Running time should not vary between computers
 Running time should not vary between languages
Running time is should be predictable for small inputs

 Time varies for different inputs but
cannot really express a relationship
between inputs and time needed
Can only be measured a posteriori

6.100L Lecture 21
11

COUNTING

6.100L Lecture 21
12

COUNTING
OPERATIONS

 Assume these steps take
constant time:

• Mathematical operations
• Comparisons
• Assignments
• Accessing objects in memory

 Count number of
operations executed as
function of size of input

def c_to_f(c):
return c*9.0/5 + 32

def mysum(x):
total = 0
for i in range(x+1):

total += i
return total

def square(n):
sqsum = 0
for i in range(n):

for j in range(n):
sqsum += 1

return sqsum

6.100L Lecture 21

mysum 1+(x+1)*(1+2) = 3x+4 ops

c_to_f 3 ops

square 1+n*(1)*n*(1+2) = 3n2 + 1 ops

13

COUNTING c_to_f

 No matter what the input is, the number of operations is the
same

6.100L Lecture 21
14

COUNTING mysum

 As the input increases by 10, the number if operations ran is
approx. 10 times more.

6.100L Lecture 21
15

COUNTING square

 As the input increases
by 10, the number of
operations is approx.
100 times more.

 As the input increases
by 2, the number of
operations is approx.
4 times more.

6.100L Lecture 21
16

6.0001 LECTURE 8

COUNTING OPERATIONS IS
INDEPENDENT OF COMPUTER
VARIATIONS, BUT …

 GOAL: to evaluate different algorithms
 Running “time” should vary between algorithms
 Running “time” should not vary between implementations
 Running “time” should not vary between computers
 Running “time” should not vary between languages
 Running “time” is should be predictable for small inputs
 No real definition of which operations to count

 Count varies for different inputs and
can derive a relationship
between inputs and the count

6.100L Lecture 21
17

… STILL NEED A BETTER WAY

• Timing and counting evaluate implementations
• Timing and counting evaluate machines

• Want to evaluate algorithm
• Want to evaluate scalability
• Want to evaluate in terms of input size

6.100L Lecture 21
18

MIT OpenCourseWare
https://ocw.mit.edu

6.100L Introduction to Computer Science and Programming Using Python
Fall 2022

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

19

https://ocw.mit.edu
https://ocw.mit.edu/terms

	TIMING PROGRAMS, COUNTING OPERATIONS�(download slides and .py files to follow along)
	WRITING EFFICIENT PROGRAMS
	EFFICIENCY IS IMPORTANT
	EVALUATING PROGRAMS
	ASIDE on MODULES
	TIMING
	TIMING A PROGRAM
	TIMNG c_to_f
	TIMING mysum
	TIMING square
	TIMING PROGRAMS IS INCONSISTENT
	COUNTING
	COUNTING �OPERATIONS
	COUNTING c_to_f
	COUNTING mysum
	COUNTING square
	COUNTING OPERATIONS IS INDEPENDENT OF COMPUTER VARIATIONS, BUT …
	… STILL NEED A BETTER WAY
	cover-slides.pdf
	cover_h.pdf
	Blank Page

