
TIMING PROGRAMS,
COUNTING OPERATIONS

(download slides and .py files to follow along)
6.100L Lecture 21

Ana Bell

1

WRITING EFFICIENT PROGRAMS

 So far, we have emphasized correctness. It is the first
thing to worry about! But sometimes that is not enough.
 Problems can be very complex

 But data sets can be
very large: in 2014
Google served
30,000,000,000,000
pages covering
100,000,000 GB
of data

6.100L Lecture 21
2

EFFICIENCY IS IMPORTANT

 Separate time and space efficiency of a program

 Tradeoff between them: can use up a bit more memory
to store values for quicker lookup later
 Think Fibonacci recursive vs. Fibonacci with memoization

 Challenges in understanding efficiency
 A program can be implemented in many different ways

 You can solve a problem using only a handful of different
algorithms

 Want to separate choice of implementation from choice
of more abstract algorithm

6.100L Lecture 21
3

EVALUATING PROGRAMS

 Measure with a timer
 Count the operations
 Abstract notion of order of growth

6.100L Lecture 21
4

6.0001 LECTURE 9

ASIDE on MODULES

 A module is a set of python definitions in a file
 Python provides many useful modules: math, plotting/graphing, random

sampling for probability, statistical tools, many others

 You first need to “import” the module into your environment
import time
import random
import dateutil
import math

 Call functions from inside the module using the module’s name
and dot notation
math.sin(math.pi/2)

6.100L Lecture 21
5

TIMING

6.100L Lecture 21
6

TIMING A PROGRAM

 Use time module
 Recall that

importing means to
bring in that class
into your own file

 Start clock
 Call function
 Stop clock

import time

def c_to_f(c):

return c*9.0/5 + 32

tstart = time.time()

c_to_f(37)

dt = time.time() - tstart

print(dt, "s,")

6.100L Lecture 21
7

TIMNG c_to_f

 Very fast, can’t even time it accurately

6.100L Lecture 21
8

TIMING mysum

 As the input increases, the time it takes also increases
 Pattern?

 0.009 to 0.05 to 0.5 to 5 to ??

6.100L Lecture 21
9

TIMING square

 As the input increases the time it takes also increases
 square called with 100000 did not finish within a reasonable

amount of time
 Maybe we can guess a pattern if we are patient for one more

round?

6.100L Lecture 21
10

6.0001 LECTURE 8

TIMING PROGRAMS IS
INCONSISTENT

 GOAL: to evaluate different algorithms
 Running time should vary between algorithms
 Running time should not vary between implementations
 Running time should not vary between computers
 Running time should not vary between languages
Running time is should be predictable for small inputs

 Time varies for different inputs but
cannot really express a relationship
between inputs and time needed
Can only be measured a posteriori

6.100L Lecture 21
11

COUNTING

6.100L Lecture 21
12

COUNTING
OPERATIONS

 Assume these steps take
constant time:

• Mathematical operations
• Comparisons
• Assignments
• Accessing objects in memory

 Count number of
operations executed as
function of size of input

def c_to_f(c):
return c*9.0/5 + 32

def mysum(x):
total = 0
for i in range(x+1):

total += i
return total

def square(n):
sqsum = 0
for i in range(n):

for j in range(n):
sqsum += 1

return sqsum

6.100L Lecture 21

mysum 1+(x+1)*(1+2) = 3x+4 ops

c_to_f 3 ops

square 1+n*(1)*n*(1+2) = 3n2 + 1 ops

13

COUNTING c_to_f

 No matter what the input is, the number of operations is the
same

6.100L Lecture 21
14

COUNTING mysum

 As the input increases by 10, the number if operations ran is
approx. 10 times more.

6.100L Lecture 21
15

COUNTING square

 As the input increases
by 10, the number of
operations is approx.
100 times more.

 As the input increases
by 2, the number of
operations is approx.
4 times more.

6.100L Lecture 21
16

6.0001 LECTURE 8

COUNTING OPERATIONS IS
INDEPENDENT OF COMPUTER
VARIATIONS, BUT …

 GOAL: to evaluate different algorithms
 Running “time” should vary between algorithms
 Running “time” should not vary between implementations
 Running “time” should not vary between computers
 Running “time” should not vary between languages
 Running “time” is should be predictable for small inputs
 No real definition of which operations to count

 Count varies for different inputs and
can derive a relationship
between inputs and the count

6.100L Lecture 21
17

… STILL NEED A BETTER WAY

• Timing and counting evaluate implementations
• Timing and counting evaluate machines

• Want to evaluate algorithm
• Want to evaluate scalability
• Want to evaluate in terms of input size

6.100L Lecture 21
18

MIT OpenCourseWare
https://ocw.mit.edu

6.100L Introduction to Computer Science and Programming Using Python
Fall 2022

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

19

https://ocw.mit.edu
https://ocw.mit.edu/terms

	TIMING PROGRAMS, COUNTING OPERATIONS�(download slides and .py files to follow along)
	WRITING EFFICIENT PROGRAMS
	EFFICIENCY IS IMPORTANT
	EVALUATING PROGRAMS
	ASIDE on MODULES
	TIMING
	TIMING A PROGRAM
	TIMNG c_to_f
	TIMING mysum
	TIMING square
	TIMING PROGRAMS IS INCONSISTENT
	COUNTING
	COUNTING �OPERATIONS
	COUNTING c_to_f
	COUNTING mysum
	COUNTING square
	COUNTING OPERATIONS IS INDEPENDENT OF COMPUTER VARIATIONS, BUT …
	… STILL NEED A BETTER WAY
	cover-slides.pdf
	cover_h.pdf
	Blank Page

