
FITNESS TRACKER
OBJECT ORIENTED

PROGRAMMING EXAMPLE
(download slides and .py files to follow along)

6.100L Lecture 20
Ana Bell

1

IMPLEMENTING USING
THE CLASS vs THE CLASS

Implementing a new
object type with a class

 Define the class
 Define data attributes

(WHAT IS the object)
 Define methods

(HOW TO use the object)

Class abstractly captures
common properties and
behaviors

6.100L Lecture 20

Using the new object type in
code

• Create instances of the
object type

• Do operations with them

Instances have specific
values for attributes

Two different coding perspectives
2

Workout Tracker Example

6.100L Lecture 20

 Suppose we are writing a program to track workouts,
e.g., for a smart watch

Different kinds of workouts

Thanks to Sam Madden for this OOP
example (his slides have been modified)

Apple Watch and fitness tracker screens © Apple. Fitbit © Fitbit Inc.
Garmin watch © Garmin. All rights reserved. This content is excluded
from our Creative Commons license. For more information, see
https://ocw.mit.edu/help/faq-fair-use/

3

Fitness Tracker

6.100L Lecture 20

Different types of workouts

Common properties:
Icon Kind
Date Start Time
End Time Calories
Heart Rate Distance

Swimming Specific:
Swimming Pace
Stroke Type
100 yd Splits

Running Specific:
Cadence
Running Pace
Mile Splits
Elevation

© Apple. All rights reserved. This content is
excluded from our Creative Commons license.
For more information, see
https://ocw.mit.edu/help/faq-fair-use/

4

GROUPS OF OBJECTS HAVE
ATTRIBUTES (RECAP)

 Data attributes
• How can you represent your object with data?
• What it is
• for a coordinate: x and y values
• for a workout: start time, end time, calories

 Functional attributes (behavior/operations/methods)
• How can someone interact with the object?
• What it does
• for a coordinate: find distance between two
• for a workout: display an information card

6.100L Lecture 20

© Apple. All rights reserved. This content is
excluded from our Creative Commons license.
For more information, see
https://ocw.mit.edu/help/faq-fair-use/5

DEFINE A SIMPLE CLASS (RECAP)

class Workout(object):

def __init__(self, start, end, calories):

self.start = start

self.end = end

self.calories = calories

self.icon = '😓😓'

self.kind = 'Workout'

my_workout = Workout('9/30/2021 1:35 PM', 9/30/2021 1:57 PM', 200)

6

GETTER AND SETTER METHODS (RECAP)
class Workout(object):

def __init__(self, start, end, calories):
self.start = start
self.end = end
self.calories = calories
self.icon = '😓😓'
self.kind = 'Workout'

def get_calories(self):
return self.calories

def get_start(self):
return self.start

def get_end(self):
return self.end

def set_calories(self, calories):
self.calories = calories

def set_start(self, start):
self.start = start

def set_end(self, end):
self.end = end

Getters and setters used outside of class to access data attributes
6.100L Lecture 20

7

Accessed via
“self” keyword

Class State
Dictionary

SELF PROVIDES ACCESS TO CLASS
STATE

6.100L Lecture 20

Workout

Class

get_calories()

get_end()

__init__()

my_workout = Workout('9/30/2021 1:35 PM', 9/30/2021 1:57 PM', 200)

start

end

calories

my_workout

an instance

Instance State
Dictionary

Demo

get_start()

set_calories()

set_start()

set_end()

icon

kind

8

AN INSTANCE and
DOT NOTATION (RECAP)

 Instantiation creates an instance of an object
myWorkout = Workout('9/30/2021 1:35 PM', '9/30/2021 1:57 PM', 200)

 Dot notation used to access attributes (data and methods)

 It’s better to use getters and setters to access data attributes

my_workout.calories

my_workout.get_calories()

6.100L Lecture 20
9

WHY INFORMATION HIDING?

 Keep the interface of your class as simple as possible
 Use getters & setters, not attributes

 i.e., get_calories() method NOT calories attribute
 Prevents bugs due to changes in implementation

 May seem inconsequential in small programs, but for
large programs complex interfaces increase the potential
for bugs
 If you are writing a class for others to use, you are

committing to maintaining its interface!

6.100L Lecture 20
10

CHANGING THE CLASS
IMPLEMENTATION

 Author of class definition may change internal
representation or implementation
 Use a class variable
 Now get_calories estimates calories based of workout

duration if calories are not passed in

 If accessing data attributes outside the class and class
implementation changes, may get errors

6.100L Lecture 20
11

CHANGING THE CLASS
IMPLEMENTATION

class Workout:

cal_per_hr = 200

def __init__(self, start, end, calories=None):

self.start = parser.parse(start)

self.end = parser.parse(end)

self.calories = calories # may be None

self.icon = '😓😓'
self.kind = 'Workout'

def get_calories(self):
if (calories == None):

return Workout.cal_per_hr*(self.end-self.start).total_seconds()/3600
else:

return self.calories

6.100L Lecture 20

Demo

12

ASIDE: datetime OBJECTS
OTHER PYTON LIBRARIES

 Takes the string representing the date and time and converts it
to a datetime object

from dateutil import parser

start = '9/30/2021 1:35 PM'

end = '9/30/2021 1:45 PM'

start_date = parser.parse(start)

end_date = parser.parse(end)

type(start_date)

 Why do this? Because it makes operations with dates easy!
The datetime object takes care of everything

print((end_date-start_date).total_seconds())

6.100L Lecture 20
13

CLASS VARIABLES LIVE IN CLASS
STATE DICTIONARY

6.100L Lecture 20

Accessed via
“self” keyword

Workout

Class

get_calories()

get_end()

__init__()

start

end

calories

my_workout

an instance

Instance State
DictionaryClass State

Dictionary

get_start()

set_calories()

set_start()

set_end()
icon

kind

cal_per_hr

14

CLASS VARIABLES

class Workout:

cal_per_hr = 200

def __init__(self, start, end, calories):

…

print(Workout.cal_per_hr)

w = Workout('1/1/2021 2:34', '1/1/2021 3:35', None)

print(w.cal_per_hr)

Workout.cal_per_hr = 250
print(w.cal_per_hr)

6.100L Lecture 20

Associate a class variable with all instances of a class

Warning: if an instance changes the class variable, it’s
changed for all instances

15

YOU TRY IT!
 Write lines of code to create two Workout objects.

 One Workout object saved as variable w_one,
from Jan 1 2021 at 3:30 PM until 4 PM.
You want to estimate the calories from this workout.
Print the number of calories for w_one.

 Another Workout object saved as w_two,
from Jan 1 2021 at 3:35 PM until 4 PM.
You know you burned 300 calories for this workout.
Print the number of calories for w_two.

6.100L Lecture 20
16

NEXT UP: CLASS HIERARCHIES

6.100L Lecture 20
17

WorkoutHIERARCHIES

 Parent class
(superclass)

 Child class
(subclass)
• Inherits all data and

behaviors of parent
class

• Add more info
• Add more behavior
• Override behavior

Indoor
Workout

Outdoor
Workout

6.100L Lecture 20

Treadmill

Running

Weights

Swimming

18

Fitness Tracker

6.100L Lecture 20

Different kinds of workouts

Common properties:
Icon Kind
Date Start
Time
End Time Calories
Heart Rate Distance

Swimming Specific:
Swimming Pace
Stroke Type
100 yd Splits

Running Specific:
Cadence
Running Pace
Mile Splits
Elevation

© Apple. All rights reserved. This content is
excluded from our Creative Commons license.
For more information, see
https://ocw.mit.edu/help/faq-fair-use/

19

INHERITANCE:
PARENT CLASS

class Workout(object):

cal_per_hr = 200

def __init__(self, start, end, calories=None):

…

 Everything is an object
 Class object implements basic operations in Python, e.g.,

binding variables

6.100L Lecture 20
20

class RunWorkout(Workout):

def __init__(self, start, end, elev=0, calories=None):

super().__init__(start,end,calories)

self.icon = '�'
self.kind = 'Running'

self.elev = elev

def get_elev(self):

return self.elev

def set_elev(self, e):

self.elev = e

INHERITANCE:
SUBCLASS

Add new functionality e.g., get_elev()
• New methods can be called on instance of type RunWorkout
• __init__ uses super() to setup Workout base instance (can also

call Workout.__init__(start,end,calories) directly
6.100L Lecture 20

21

start

end

calories

icon

kind

INHERITANCE REPRESENTATION
IN MEMORY

6.100L Lecture 20

RunWorkout

Class

super()

get_elev()

RunWorkout

instance

Demo

set_elev()

Workout

Class

get_calories()

get_end()

__init__()

get_start()

set_calories()

set_start()

set_end()

cal_per_hr

elev

Accessed via
“self” keyword

22

WHY USE INHERITENCE?

 Improve clarity
 Commonalities are explicit in parent class
 Differences are explicit in subclass

 Reuse code
 Enhance modularity

 Can pass subclasses to any method that uses parent

6.100L Lecture 20
23

 Complex print function shared by all subclasses

SUBCLASSES REUSE PARENT CODE

6.100L Lecture 20

class Workout(object)
………

def __str__(self):
width = 16
retstr = f"|{'–'*width}|\n"
retstr += f"|{' ' *width}|\n"
iconLen = 0
retstr += f"| {self.icon}{' '*(width-3)}|\n"
retstr += f"| {self.kind}{' '*(width-len(self.kind)-1)}|\n"
retstr += f"|{' ' *width}|\n"
duration_str = str(self.get_duration())
retstr += f"| {duration_str}{' '*(width-len(duration_str)-1)}|\n"
cal_str = f"{self.get_calories():.0f}"
retstr += f"| {cal_str} Calories {' '*(width-len(cal_str)-11)}|\n"

retstr += f"|{' ' *width}|\n"
retstr += f"|{'_'*width}|\n"

return retstr

outputs

24

SUBCLASSES REUSE PARENT CODE

6.100L Lecture 20

w=Workout(…)
rw=RunWorkout(…)
sw=SwimWorkout(…)

print(w)
print(rw)
print(sw)

Demo

25

WHERE CAN I USE AN INSTANCE
OF A CLASS?

 We can use an instance of RunWorkout anywhere Workout can
be used
 Opposite is not true (cannot use Workout anywhere
RunWorkout is used)
 Consider two helper functions

6.100L Lecture 20

def total_calories(workouts):
cals = 0
for w in workouts:

cals += w.get_cals()
return cals

def total_elevation(run_workouts):
elev = 0
for w in run_workouts:

elev += w.get_elev()
return elev

26

WHERE CAN I USE AN INSTANCE
OF A CLASS?

6.100L Lecture 20

def total_calories(workouts):
cals = 0
for w in workouts:

cals += w.get_cals()
return cals

def total_elevation(run_workouts):
elev = 0
for w in run_workouts:

elev += w.get_elev()
return elev

w1 = Workout('9/30/2021 1:35 PM','9/30/2021 2:05 PM')

w2 = Workout('9/30/2021 4:35 PM','9/30/2021 5:05 PM')

rw1 = RunWorkout('9/30/2021 1:35 PM','9/30/2021 3:35 PM', 100)

rw2 = RunWorkout('9/30/2021 1:35 PM','9/30/2021 3:35 PM', 200)

total_calories([w1,w2,rw1,rw2])) # (1) # cal = 100+100+400+400

total_elevation([rw1,rw2])) # (2) # elev = 100+200

total_elevation([w1,rw1]) # (3) # err! w1 has no elev method

Demo

27

YOU TRY IT!
 For each line creating on object below, tell me:

 What is the calories val through get_calories()
 What is the elevation val through get_elev()

w1 = Workout('9/30/2021 2:20 PM','9/30/2021 2:50 PM')

w2 = Workout('9/30/2021 2:20 PM','9/30/2021 2:50 PM',450)

rw1 = RunWorkout('9/30/2021 2:20 PM','9/30/2021 2:50 PM',250)

rw2 = RunWorkout('9/30/2021 2:20 PM','9/30/2021 2:50 PM',250,300)

rw3 = RunWorkout('9/30/2021 2:20 PM','9/30/2021 2:50 PM',calories=300)

6.100L Lecture 20
28

OVERRIDING SUPERCLASSES

 Overriding superclass – add calorie calculation w/ distance

6.100L Lecture 20

class RunWorkout(Workout):
cals_per_km = 100

…

def get_calories(self):
if (self.route_gps_points != None):

dist = 0
lastP = self.routeGpsPoints[0]
for p in self.routeGpsPoints[1:]:

dist += gpsDistance(lastP,p)
lastP = p

return dist * RunWorkout.cals_per_km
else:

return super().get_calories()

Demo

29

start

end

calories

icon

kind

RunWorkout

Class

super()

get_elev()

RunWorkout

instance

set_elev()

Workout

Class

get_calories()

get_end()

__init__()

get_start()

set_calories()

set_start()

set_end()

cal_per_hr

elev

Accessed via
“self” keyword

OVERRIDDEN METHODS IN
MEMORY

6.100L Lecture 20

cals_per_km

get_calories()

30

WHICH METHOD
WILL BE CALLED?

• Overriding: subclass methods
with same name as superclass

• For an instance of a class, look
for a method name in current
class definition

• If not found, look for method
name up the hierarchy (in
parent, then grandparent, and
so on)

• Use first method up the
hierarchy that you found with
that method name

6.100L Lecture 20

Workout

Indoor
Workout

Outdoor
Workout

Treadmill

Running

Weights

Swimming

get_calories()?

get_calories()?

get_calories()

31

TESTING EQUALITY WITH
SUBCLASSES

 With subclasses, often want to ensure base class is equal, in
addition to new properties in the subclass

6.100L Lecture 20

class Workout(object):
……

def __eq__(self, other):
return type(self) == type(other) and \

self.startDate == other.startDate and \
self.endDate == other.endDate and \
self.kind == other.kind and \
self.get_calories() == other.get_calories()

class RunWorkout(Workout):
……

def __eq__(self,other):
return super().__eq__(other) and self.elev == other.elev

Demo

32

OBJECT ORIENTED DESIGN:
MORE ART THAN SCIENCE

 OOP is a powerful tool for modularizing your code and grouping state
and functions together

BUT
 It’s possible to overdo it

 New OOP programmers often create elaborate class hierarchies
 Not necessarily a good idea
 Think about the users of your code

Will your decomposition make sense to them?
 Because the function that is invoked is implicit in the class hierarchy, it can

sometimes be difficult to reason about control flow

 The Internet is full of opinions OOP and “good software design” – you
have to develop your own taste through experience!

6.100L Lecture 20
33

MIT OpenCourseWare
https://ocw.mit.edu

6.100L Introduction to Computer Science and Programming Using Python
Fall 2022

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

34

https://ocw.mit.edu
https://ocw.mit.edu/terms

	FITNESS TRACKER�OBJECT ORIENTED PROGRAMMING EXAMPLE�(download slides and .py files to follow along)
	IMPLEMENTING 	 		 USING�THE CLASS 	 vs 	THE CLASS
	Workout Tracker Example
	Fitness Tracker
	GROUPS OF OBJECTS HAVE ATTRIBUTES (RECAP)
	DEFINE A SIMPLE CLASS (RECAP)
	GETTER AND SETTER METHODS (RECAP)
	SELF PROVIDES ACCESS TO CLASS STATE
	AN INSTANCE and �DOT NOTATION (RECAP)
	WHY INFORMATION HIDING?
	CHANGING THE CLASS IMPLEMENTATION
	CHANGING THE CLASS IMPLEMENTATION
	ASIDE: datetime OBJECTS�OTHER PYTON LIBRARIES
	CLASS VARIABLES LIVE IN CLASS STATE DICTIONARY
	CLASS VARIABLES
	Slide Number 16
	Slide Number 18
	HIERARCHIES
	Fitness Tracker
	INHERITANCE:�PARENT CLASS
	INHERITANCE: �SUBCLASS
	INHERITANCE REPRESENTATION IN MEMORY
	WHY USE INHERITENCE?
	SUBCLASSES REUSE PARENT CODE
	SUBCLASSES REUSE PARENT CODE
	WHERE CAN I USE AN INSTANCE OF A CLASS?
	WHERE CAN I USE AN INSTANCE OF A CLASS?
	Slide Number 29
	OVERRIDING SUPERCLASSES
	OVERRIDDEN METHODS IN MEMORY
	WHICH METHOD �WILL BE CALLED?
	TESTING EQUALITY WITH SUBCLASSES
	OBJECT ORIENTED DESIGN: MORE ART THAN SCIENCE
	cover-slides.pdf
	cover_h.pdf
	Blank Page

