
EXCEPTIONS,
ASSERTIONS

(download slides and .py files to follow along)
6.100L Lecture 13

Ana Bell

1

EXCEPTIONS

2

UNEXPECTED
CONDITIONS

 What happens when procedure execution hits an unexpected
condition?
 Get an exception… to what was expected

• Trying to access beyond list limits
test = [1,7,4]
test[4]  IndexError

• Trying to convert an inappropriate type
int(test)  TypeError

• Referencing a non-existing variable
a  NameError

• Mixing data types without coercion
'a'/4  TypeError

6.100L Lecture 13
3

HANDLING EXCEPTIONS

 Typically, exception causes an error to occur and execution to stop
 Python code can provide handlers for exceptions

 If expressions in try block all succeed
 Evaluation continues with code after except block

 Exceptions raised by any statement in body of try are handled by the
except statement
 Execution continues with the body of the except statement
 Then other expressions after that block of code

6.100L Lecture 13

if <all potentially problematic code succeeds>:
great, all that code
just ran fine!

else:
do something to
handle the problem

try:
do some potentially
problematic code

except:
do something to
handle the problem

4

EXAMPLE with CODE YOU MIGHT
HAVE ALREADY SEEN

 A function that sums digits in a string
CODE YOU’VE SEEN CODE WITH EXCEPTIONS

6.100L Lecture 13

def sum_digits(s):

""" s is a non-empty string

containing digits.

Returns sum of all chars that

are digits """

total = 0

for char in s:

try:

val = int(char)

total += val

except:

print("can't convert", char)

return total

def sum_digits(s):

""" s is a non-empty string

containing digits.

Returns sum of all chars that

are digits """

total = 0

for char in s:

if char in '0123456789':

val = int(char)

total += val

return total

5

USER INPUT CAN LEAD TO
EXCEPTIONS

 User might input a character :(
 User might make b be 0 :(

a = int(input("Tell me one number:"))
b = int(input("Tell me another number:"))
print(a/b)

 Use try/except around the problematic code

try:
a = int(input("Tell me one number:"))
b = int(input("Tell me another number:"))
print(a/b)

except:
print("Bug in user input.")

6.100L Lecture 13
6

HANDLING SPECIFIC EXCEPTIONS

 Have separate except clauses to deal with a particular
type of exception

try:
a = int(input("Tell me one number: "))
b = int(input("Tell me another number: "))
print("a/b = ", a/b)
print("a+b = ", a+b)

except ValueError:
print("Could not convert to a number.")

except ZeroDivisionError:
print("Can't divide by zero")
print("a/b = infinity")
print("a+b =", a+b)

except:
print("Something went very wrong.")

6.100L Lecture 13

7

OTHER BLOCKS ASSOCIATED WITH
A TRY BLOCK

 else:
• Body of this is executed when execution of associated try body

completes with no exceptions

 finally:
• Body of this is always executed after try, else and except clauses,

even if they raised another error or executed a break, continue or
return

• Useful for clean-up code that should be run no matter what else
happened (e.g. close a file)

 Nice to know these exist, but we don’t really use these in this
class

6.100L Lecture 13

8

WHAT TO DO WITH EXCEPTIONS?

 What to do when encounter an error?
 Fail silently:

• Substitute default values or just continue
• Bad idea! user gets no warning

 Return an “error” value
• What value to choose?
• Complicates code having to check for a special value

 Stop execution, signal error condition
• In Python: raise an exception
raise ValueError("something is wrong")

6.100L Lecture 13

9

EXAMPLE with SOMETHING
YOU’VE ALREADY SEEN

 A function that sums digits in a string
 Execution stopping means a bad result is not propagated

6.100L Lecture 13

def sum_digits(s):

""" s is a non-empty string containing digits.

Returns sum of all chars that are digits """

total = 0

for char in s:

try:

val = int(char)

total += val

except:

raise ValueError("string contained a character")

return total

10

YOU TRY IT!
def pairwise_div(Lnum, Ldenom):

""" Lnum and Ldenom are non-empty lists of equal lengths containing numbers

Returns a new list whose elements are the pairwise
division of an element in Lnum by an element in Ldenom.

Raise a ValueError if Ldenom contains 0. """
your code here

For example:
L1 = [4,5,6]
L2 = [1,2,3]
print(pairwise_div(L1, L2)) # prints [4.0,2.5,2.0]

L1 = [4,5,6]
L2 = [1,0,3]
print(pairwise_div(L1, L2)) # raises a ValueError

6.100L Lecture 13
11

ASSERTIONS

6.100L Lecture 13
12

ASSERTIONS: DEFENSIVE
PROGRAMMING TOOL

 Want to be sure that assumptions on state of computation are as
expected
 Use an assert statement to raise an AssertionError

exception if assumptions not met
assert <statement that should be true>, "message if not true"

 An example of good defensive programming
 Assertions don’t allow a programmer to control response to unexpected

conditions
 Ensure that execution halts whenever an expected condition is not met
 Typically used to check inputs to functions, but can be used anywhere
 Can be used to check outputs of a function to avoid propagating bad

values
 Can make it easier to locate a source of a bug

6.100L Lecture 13

13

EXAMPLE with SOMETHING
YOU’VE ALREADY SEEN

 A function that sums digits in a NON-EMPTY string
 Execution stopping means a bad result is not propagated

6.100L Lecture 13

def sum_digits(s):

""" s is a non-empty string containing digits.

Returns sum of all chars that are digits """

assert len(s) != 0, "s is empty"

total = 0

for char in s:

try:

val = int(char)

total += val

except:

raise ValueError("string contained a character")
14

YOU TRY IT!
def pairwise_div(Lnum, Ldenom):

""" Lnum and Ldenom are non-empty lists of equal lengths
containing numbers

Returns a new list whose elements are the pairwise

division of an element in Lnum by an element in Ldenom.

Raise a ValueError if Ldenom contains 0. """

add an assert line here

6.100L Lecture 13
15

ANOTHER EXAMPLE

6.100L Lecture 13
16

LONGER EXAMPLE OF
EXCEPTIONS and ASSERTIONS

 Assume we are given a class list for a subject: each
entry is a list of two parts

• A list of first and last name for a student
• A list of grades on assignments

 Create a new class list, with name, grades, and an
average added at the end

test_grades = [[['peter', 'parker'], [80.0, 70.0, 85.0]],
[['bruce', 'wayne'], [100.0, 80.0, 74.0]]]

[[['peter', 'parker'], [80.0, 70.0, 85.0], 78.33333],
[['bruce', 'wayne'], [100.0, 80.0, 74.0], 84.666667]]]

6.100L Lecture 13

17

EXAMPLE
CODE

def get_stats(class_list):

new_stats = []

for stu in class_list:

new_stats.append([stu[0], stu[1], avg(stu[1])])

return new_stats

def avg(grades):

return sum(grades)/len(grades)

[[['peter', 'parker'], [80.0, 70.0, 85.0]],
[['bruce', 'wayne'], [100.0, 80.0, 74.0]]]

6.100L Lecture 13

18

ERROR IF NO GRADE FOR A
STUDENT

 If one or more students don’t have any grades,
get an error

test_grades = [[['peter', 'parker'], [10.0,55.0,85.0]],
[['bruce', 'wayne'], [10.0,80.0,75.0]],
[['captain', 'america'], [80.0,10.0,96.0]],
[['deadpool'], []]]

 Get ZeroDivisionError: float division by zero
because try to
return sum(grades)/len(grades)

6.100L Lecture 13

19

OPTION 1: FLAG THE ERROR BY
PRINTING A MESSAGE

 Decide to notify that something went wrong with a msg
def avg(grades):

try:
return sum(grades)/len(grades)

except ZeroDivisionError:
print('warning: no grades data')

 Running on same test data gives
warning: no grades data

[[['peter', 'parker'], [10.0, 55.0, 85.0], 50.0],

[['bruce', 'wayne'], [10.0, 80.0, 75.0], 55.0],

[['captain', 'america'], [80.0, 10.0, 96.0], 62.0],

[['deadpool'], [], None]]

6.100L Lecture 13

20

OPTION 2: CHANGE THE POLICY

 Decide that a student with no grades gets a zero
def avg(grades):

try:
return sum(grades)/len(grades)

except ZeroDivisionError:
print('warning: no grades data')
return 0.0

 Running on same test data gives
warning: no grades data

[[['peter', 'parker'], [10.0, 55.0, 85.0], 50.0],

[['bruce', 'wayne'], [10.0, 80.0, 75.0], 55.0],

[['captain', 'america'], [80.0, 10.0, 96.0], 62]

[['deadpool'], [], 0.0]]

6.100L Lecture 13
21

OPTION 3: HALT EXECUTION IF
ASSERT IS NOT MET

def avg(grades):

assert len(grades) != 0, 'no grades data'

return sum(grades)/len(grades)

 Raises an AssertionError if it is given an empty list
for grades, prints out string message; stops execution
Otherwise runs as normal

6.100L Lecture 13
22

ASSERTIONS vs. EXCEPTIONS

 Goal is to spot bugs as soon as introduced and make
clear where they happened
 Exceptions provide a way of handling unexpected input

 Use when you don’t need to halt program execution
 Raise exceptions if users supplies bad data input

 Use assertions:
• Enforce conditions on a “contract” between a coder and a user
• As a supplement to testing
• Check types of arguments or values
• Check that invariants on data structures are met
• Check constraints on return values
• Check for violations of constraints on procedure (e.g. no

duplicates in a list)
6.100L Lecture 13

23

MIT OpenCourseWare
https://ocw.mit.edu

6.100L Introduction to Computer Science and Programming Using Python
Fall 2022

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

24

https://ocw.mit.edu
https://ocw.mit.edu/terms

	EXCEPTIONS,�ASSERTIONS�(download slides and .py files to follow along)
	EXCEPTIONS
	UNEXPECTED �CONDITIONS
	HANDLING EXCEPTIONS
	EXAMPLE with CODE YOU MIGHT HAVE ALREADY SEEN
	USER INPUT CAN LEAD TO EXCEPTIONS
	HANDLING SPECIFIC EXCEPTIONS
	OTHER BLOCKS ASSOCIATED WITH A TRY BLOCK
	WHAT TO DO WITH EXCEPTIONS?
	EXAMPLE with SOMETHING YOU’VE ALREADY SEEN
	Slide Number 12
	ASSERTIONS
	ASSERTIONS: DEFENSIVE PROGRAMMING TOOL
	EXAMPLE with SOMETHING YOU’VE ALREADY SEEN
	Slide Number 17
	ANOTHER EXAMPLE
	LONGER EXAMPLE OF EXCEPTIONS and ASSERTIONS
	EXAMPLE �CODE
	ERROR IF NO GRADE FOR A STUDENT
	OPTION 1: FLAG THE ERROR BY PRINTING A MESSAGE
	OPTION 2: CHANGE THE POLICY
	OPTION 3: HALT EXECUTION IF ASSERT IS NOT MET
	ASSERTIONS vs. EXCEPTIONS
	cover-slides.pdf
	cover_h.pdf
	Blank Page

