
EXCEPTIONS,
ASSERTIONS

(download slides and .py files to follow along)
6.100L Lecture 13

Ana Bell

1

EXCEPTIONS

2

UNEXPECTED
CONDITIONS

 What happens when procedure execution hits an unexpected
condition?
 Get an exception… to what was expected

• Trying to access beyond list limits
test = [1,7,4]
test[4] IndexError

• Trying to convert an inappropriate type
int(test) TypeError

• Referencing a non-existing variable
a NameError

• Mixing data types without coercion
'a'/4 TypeError

6.100L Lecture 13
3

HANDLING EXCEPTIONS

 Typically, exception causes an error to occur and execution to stop
 Python code can provide handlers for exceptions

 If expressions in try block all succeed
 Evaluation continues with code after except block

 Exceptions raised by any statement in body of try are handled by the
except statement
 Execution continues with the body of the except statement
 Then other expressions after that block of code

6.100L Lecture 13

if <all potentially problematic code succeeds>:
great, all that code
just ran fine!

else:
do something to
handle the problem

try:
do some potentially
problematic code

except:
do something to
handle the problem

4

EXAMPLE with CODE YOU MIGHT
HAVE ALREADY SEEN

 A function that sums digits in a string
CODE YOU’VE SEEN CODE WITH EXCEPTIONS

6.100L Lecture 13

def sum_digits(s):

""" s is a non-empty string

containing digits.

Returns sum of all chars that

are digits """

total = 0

for char in s:

try:

val = int(char)

total += val

except:

print("can't convert", char)

return total

def sum_digits(s):

""" s is a non-empty string

containing digits.

Returns sum of all chars that

are digits """

total = 0

for char in s:

if char in '0123456789':

val = int(char)

total += val

return total

5

USER INPUT CAN LEAD TO
EXCEPTIONS

 User might input a character :(
 User might make b be 0 :(

a = int(input("Tell me one number:"))
b = int(input("Tell me another number:"))
print(a/b)

 Use try/except around the problematic code

try:
a = int(input("Tell me one number:"))
b = int(input("Tell me another number:"))
print(a/b)

except:
print("Bug in user input.")

6.100L Lecture 13
6

HANDLING SPECIFIC EXCEPTIONS

 Have separate except clauses to deal with a particular
type of exception

try:
a = int(input("Tell me one number: "))
b = int(input("Tell me another number: "))
print("a/b = ", a/b)
print("a+b = ", a+b)

except ValueError:
print("Could not convert to a number.")

except ZeroDivisionError:
print("Can't divide by zero")
print("a/b = infinity")
print("a+b =", a+b)

except:
print("Something went very wrong.")

6.100L Lecture 13

7

OTHER BLOCKS ASSOCIATED WITH
A TRY BLOCK

 else:
• Body of this is executed when execution of associated try body

completes with no exceptions

 finally:
• Body of this is always executed after try, else and except clauses,

even if they raised another error or executed a break, continue or
return

• Useful for clean-up code that should be run no matter what else
happened (e.g. close a file)

 Nice to know these exist, but we don’t really use these in this
class

6.100L Lecture 13

8

WHAT TO DO WITH EXCEPTIONS?

 What to do when encounter an error?
 Fail silently:

• Substitute default values or just continue
• Bad idea! user gets no warning

 Return an “error” value
• What value to choose?
• Complicates code having to check for a special value

 Stop execution, signal error condition
• In Python: raise an exception
raise ValueError("something is wrong")

6.100L Lecture 13

9

EXAMPLE with SOMETHING
YOU’VE ALREADY SEEN

 A function that sums digits in a string
 Execution stopping means a bad result is not propagated

6.100L Lecture 13

def sum_digits(s):

""" s is a non-empty string containing digits.

Returns sum of all chars that are digits """

total = 0

for char in s:

try:

val = int(char)

total += val

except:

raise ValueError("string contained a character")

return total

10

YOU TRY IT!
def pairwise_div(Lnum, Ldenom):

""" Lnum and Ldenom are non-empty lists of equal lengths containing numbers

Returns a new list whose elements are the pairwise
division of an element in Lnum by an element in Ldenom.

Raise a ValueError if Ldenom contains 0. """
your code here

For example:
L1 = [4,5,6]
L2 = [1,2,3]
print(pairwise_div(L1, L2)) # prints [4.0,2.5,2.0]

L1 = [4,5,6]
L2 = [1,0,3]
print(pairwise_div(L1, L2)) # raises a ValueError

6.100L Lecture 13
11

ASSERTIONS

6.100L Lecture 13
12

ASSERTIONS: DEFENSIVE
PROGRAMMING TOOL

 Want to be sure that assumptions on state of computation are as
expected
 Use an assert statement to raise an AssertionError

exception if assumptions not met
assert <statement that should be true>, "message if not true"

 An example of good defensive programming
 Assertions don’t allow a programmer to control response to unexpected

conditions
 Ensure that execution halts whenever an expected condition is not met
 Typically used to check inputs to functions, but can be used anywhere
 Can be used to check outputs of a function to avoid propagating bad

values
 Can make it easier to locate a source of a bug

6.100L Lecture 13

13

EXAMPLE with SOMETHING
YOU’VE ALREADY SEEN

 A function that sums digits in a NON-EMPTY string
 Execution stopping means a bad result is not propagated

6.100L Lecture 13

def sum_digits(s):

""" s is a non-empty string containing digits.

Returns sum of all chars that are digits """

assert len(s) != 0, "s is empty"

total = 0

for char in s:

try:

val = int(char)

total += val

except:

raise ValueError("string contained a character")
14

YOU TRY IT!
def pairwise_div(Lnum, Ldenom):

""" Lnum and Ldenom are non-empty lists of equal lengths
containing numbers

Returns a new list whose elements are the pairwise

division of an element in Lnum by an element in Ldenom.

Raise a ValueError if Ldenom contains 0. """

add an assert line here

6.100L Lecture 13
15

ANOTHER EXAMPLE

6.100L Lecture 13
16

LONGER EXAMPLE OF
EXCEPTIONS and ASSERTIONS

 Assume we are given a class list for a subject: each
entry is a list of two parts

• A list of first and last name for a student
• A list of grades on assignments

 Create a new class list, with name, grades, and an
average added at the end

test_grades = [[['peter', 'parker'], [80.0, 70.0, 85.0]],
[['bruce', 'wayne'], [100.0, 80.0, 74.0]]]

[[['peter', 'parker'], [80.0, 70.0, 85.0], 78.33333],
[['bruce', 'wayne'], [100.0, 80.0, 74.0], 84.666667]]]

6.100L Lecture 13

17

EXAMPLE
CODE

def get_stats(class_list):

new_stats = []

for stu in class_list:

new_stats.append([stu[0], stu[1], avg(stu[1])])

return new_stats

def avg(grades):

return sum(grades)/len(grades)

[[['peter', 'parker'], [80.0, 70.0, 85.0]],
[['bruce', 'wayne'], [100.0, 80.0, 74.0]]]

6.100L Lecture 13

18

ERROR IF NO GRADE FOR A
STUDENT

 If one or more students don’t have any grades,
get an error

test_grades = [[['peter', 'parker'], [10.0,55.0,85.0]],
[['bruce', 'wayne'], [10.0,80.0,75.0]],
[['captain', 'america'], [80.0,10.0,96.0]],
[['deadpool'], []]]

 Get ZeroDivisionError: float division by zero
because try to
return sum(grades)/len(grades)

6.100L Lecture 13

19

OPTION 1: FLAG THE ERROR BY
PRINTING A MESSAGE

 Decide to notify that something went wrong with a msg
def avg(grades):

try:
return sum(grades)/len(grades)

except ZeroDivisionError:
print('warning: no grades data')

 Running on same test data gives
warning: no grades data

[[['peter', 'parker'], [10.0, 55.0, 85.0], 50.0],

[['bruce', 'wayne'], [10.0, 80.0, 75.0], 55.0],

[['captain', 'america'], [80.0, 10.0, 96.0], 62.0],

[['deadpool'], [], None]]

6.100L Lecture 13

20

OPTION 2: CHANGE THE POLICY

 Decide that a student with no grades gets a zero
def avg(grades):

try:
return sum(grades)/len(grades)

except ZeroDivisionError:
print('warning: no grades data')
return 0.0

 Running on same test data gives
warning: no grades data

[[['peter', 'parker'], [10.0, 55.0, 85.0], 50.0],

[['bruce', 'wayne'], [10.0, 80.0, 75.0], 55.0],

[['captain', 'america'], [80.0, 10.0, 96.0], 62]

[['deadpool'], [], 0.0]]

6.100L Lecture 13
21

OPTION 3: HALT EXECUTION IF
ASSERT IS NOT MET

def avg(grades):

assert len(grades) != 0, 'no grades data'

return sum(grades)/len(grades)

 Raises an AssertionError if it is given an empty list
for grades, prints out string message; stops execution
Otherwise runs as normal

6.100L Lecture 13
22

ASSERTIONS vs. EXCEPTIONS

 Goal is to spot bugs as soon as introduced and make
clear where they happened
 Exceptions provide a way of handling unexpected input

 Use when you don’t need to halt program execution
 Raise exceptions if users supplies bad data input

 Use assertions:
• Enforce conditions on a “contract” between a coder and a user
• As a supplement to testing
• Check types of arguments or values
• Check that invariants on data structures are met
• Check constraints on return values
• Check for violations of constraints on procedure (e.g. no

duplicates in a list)
6.100L Lecture 13

23

MIT OpenCourseWare
https://ocw.mit.edu

6.100L Introduction to Computer Science and Programming Using Python
Fall 2022

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

24

https://ocw.mit.edu
https://ocw.mit.edu/terms

	EXCEPTIONS,�ASSERTIONS�(download slides and .py files to follow along)
	EXCEPTIONS
	UNEXPECTED �CONDITIONS
	HANDLING EXCEPTIONS
	EXAMPLE with CODE YOU MIGHT HAVE ALREADY SEEN
	USER INPUT CAN LEAD TO EXCEPTIONS
	HANDLING SPECIFIC EXCEPTIONS
	OTHER BLOCKS ASSOCIATED WITH A TRY BLOCK
	WHAT TO DO WITH EXCEPTIONS?
	EXAMPLE with SOMETHING YOU’VE ALREADY SEEN
	Slide Number 12
	ASSERTIONS
	ASSERTIONS: DEFENSIVE PROGRAMMING TOOL
	EXAMPLE with SOMETHING YOU’VE ALREADY SEEN
	Slide Number 17
	ANOTHER EXAMPLE
	LONGER EXAMPLE OF EXCEPTIONS and ASSERTIONS
	EXAMPLE �CODE
	ERROR IF NO GRADE FOR A STUDENT
	OPTION 1: FLAG THE ERROR BY PRINTING A MESSAGE
	OPTION 2: CHANGE THE POLICY
	OPTION 3: HALT EXECUTION IF ASSERT IS NOT MET
	ASSERTIONS vs. EXCEPTIONS
	cover-slides.pdf
	cover_h.pdf
	Blank Page

