6.0001/6.00 Fall 2016
Problem Set 2

Handed out: Tuesday, September 20th, 2016.
Due: Tuesday, September 27th, 2016 at 11:59pm

This problem set will introduce you to the topic of creating functions in Python, as well
as looping mechanisms for repeating a computational process until a condition is
reached.

Note on Collaboration:

You may work with other students. However, each student should write up and hand
in his or her assignment separately. Be sure to indicate with whom you have worked
in the comments of your submission.

Problem 1: Basic Hangman

You will implement a variation of the classic word game Hangman. If you are
unfamiliar with the rules of the game, read
http://en.wikipedia.org/wiki/Hangman_(game). Don't be intimidated by this problem -
it's actually easier than it looks! We will 'scaffold' this problem, guiding you through
the creation of helper functions before you implement the actual game.

A) Getting Started

Download the files *thangman.py” and “words.txt”, and save them both in the same
directory. Run the file hangman.py before writing any code to ensure your files are
saved correctly. The code we have given you loads in words from a file. You should
see the following output in your shell:

Loading word list from file...
55900 words loaded.

If you see the above text, continue on to Hangman Game Requirements.
If you don’t, double check that both files are saved in the same place!

B) Hangman Game Requirements

You will implement a function called hangman that will allow the user to play hangman
against the computer. The computer picks the word, and the player tries to guess
letters in the word.

https://en.wikipedia.org/wiki/Hangman_(game)

Here is the general behavior we want to implement. Don’t be intimidated! This is just
a description; we will break this down into steps and provide further
functional specs later on in the pset so keep reading!

1. The computer must select a word at random from the list of available words
that was provided in words.txt
Note that words.txt contains words in all lowercase letters.
2. The user is given a certain number of guesses at the beginning.
3. The game is interactive; the user inputs their guess and the computer either:
a. reveals the letter if it exists in the secret word
b. penalize the user and updates the number of guesses remaining
4. The game ends when either the user guesses the secret word, or the user runs
out of guesses.

Problem 2
Hangman Part 1: Three helper functions

Before we have you write code to organize the hangman game, we are going to break
down the problem into logical subtasks, creating three helper functions you will need
to have in order for this game to work. This is a common approach to computational
problem solving, and one we want you to begin experiencing.

The file hangman.py has a number of already implemented functions you can use
while writing up your solution. You can ignore the code in the two functions at the top
of the file that have already been implemented for you, though you should understand
how to use each helper function by reading the docstrings.

1A) Determine whether the word has been guessed

First, implement the function is word guessedthat takes in two parameters - a
string, secret word, and a list of letters (strings), letters guessed. This function
returns a boolean - True if secret wordhas been guessed (i.e., all the letters of
secret wordare in letters guessed), and False otherwise. This function will be
useful in helping you decide when the hangman game has been successfully
completed, and becomes an end-test for any iterative loop that checks letters against
the secret word.

For this function, you may assume that all the letters in secret wordand
letters guessedare lowercase.

Example Usage:

>>> secret word = 'apple'

>>> letters guessed = ['e', 'i', 'k', 'p', 'r', 's']

>>> print (is_word guessed(secret word, letters guessed))
False

1B) Getting the user’s guess

Next, implement the function get guessed wordthat takes in two parameters - a
string, secret word, and a list of letters, letters guessed This function returns a
string that is comprised of letters and underscores, based on what letters in
letters guessedare in secret word This shouldn't be too different from

is word guessed

We are going to use an underscore followed by a space (_) to represent unknown
letters. We could have chosen other symbols, but the combination of underscore and
space is visible and easily discerned. Note that the space is super important, as
otherwise it hard to distinguish whether is four elements long or three. This is
called usability - it's very important, when programming, to consider the usability of
your program. If users find your program difficult to understand or operate, they
won't use it! We encourage you to think about usability when designing your program.

Hint: In designing your function, think about what information you want to return
when done, whether you need a place to store that information as you loop over a
data structure, and how you want to add information to your accumulated resulit.

Example Usage:

>>> secret word = 'apple'

>>> letters guessed = ['e', 'i', 'k', 'p', 'r', 's']

>>> print (get guessed word(secret word, letters guessed))
l_ pp_ el

1C) Getting all available letters

Next, implement the function get available lettersthat takes in one parameter - a
list of letters, letters guessed. This function returns a string that is comprised of
lowercase English letters - all lowercase English letters that are not in

letters guessed

This function should return the letters in alphabetical order. For this function, you may
assume that all the letters in letters guessedare lowercase.

Hint: You might consider using string.ascii lowercass Which is a string comprised
of all lowercase letters:

>>> import string
>>> print (string.ascii lowercase)

abcdefghijklmnopgrstuvwxyz

Example Usage:

>>> letters guessed = ['e', 'i', 'k', 'p', 'r', 's']
>>> print get available letters(letters guessed)
abcdfghjlmnogtuvwxyz

Problem 3
Hangman Part 2: The Game

Now that you have built some useful functions, you can turn to implementing the
function hangman, which takes one parameter - the secret wordthe user is to guess.
Initially, you can (and should!) manually set this secret word when you run this
function - this will make it easier to test your code. But in the end, you will want the
computer to select this secret word at random before inviting you or some other user
to play the game by running this function.

Calling the hangman function starts up an interactive game of Hangman between the
user and the computer. In designing your code, be sure you take advantage of the
three helper functions, is word guessed, get guessed worg and

get available letters that you've defined in the previous part!

Below are the game requirements broken down in different categories. Make sure
your implementation fits all the requirements!

Game Requirements

A. Game Architecture:

1. The computer must select a word at random from the list of available words
that was provided in words.txt. The functions for loading the word list and
selecting a random word have already been provided for you in hangman.py.

2. Users start with 6 guesses.

3. At the start of the game, let the user know how many letters the computer's
word contains and how many guesses s/he starts with.

4. The computer keeps track of all the letters the user has not guessed so far and
before each turn shows the user the “remaining letters”

Example Game Implementation:
Loading word list from file...
55900 words loaded.
Welcome to the game Hangman!
I am thinking of a word that is 4 letters long.
You have 6 guesses left.
Available letters: abcdefghijklmnopgrstuvwxyz

B. User-Computer Interaction:

The game must be interactive and flow as follows:
1. Before each guess, you should display to the user:
a. Remind the user of how many guesses s/he has left after each guess.
b. all the letters the user has not yet guessed
2. Ask the user to supply one guess at a time. (Look at the user input
requirements below to see what types of inputs you can expect from the user)
3. Immediately after each guess, the user should be told whether the letter is in

the computer’s word.

After each guess, you should also display to the user the computer’s word, with
guessed letters displayed and unguessed letters replaced with an underscore
and space (_)

At the end of the guess, print some dashes (-----) to help separate individual
guesses from each other

Example Game Implementation:
(The blue color below is only there to show you what the user typed in, as opposed to
what the computer output.)

You have 6 guesses left.
Available letters: abcdefghijklmnopgrstuvwxyz
Please guess a letter: a
Good guess: a

You have 6 guesses left.
Available letters: bcdefghijklmnopgrstuvwxyz
Please guess a letter: Db
Oops! That letter is not in my word: a

C. User Input Requirements:

1.

You may assume that the user will only guess one character at a time, but the
user can choose any number, symbol or letter. Your code should accept capital
and lowercase letters as valid guesses!

If the user inputs anything besides an alphabet (symbols, numbers), tell the
user that they can only input an alphabet. Because the user might do this by
accident, they should get 3 warnings at the beginning of the game. Each time
they enter an invalid input, or a letter they have already guessed, they should
lose a warning. If the user has no warnings left and enters an invalid input,
they should lose a guess.

Hint #1: Use calls to the input function to get the user’s guess.

a. Check that the user input is an alphabet
b. If the user does not input an uppercase or lowercase alphabet letter,
subtract one warning or one guess.

Hint #2: you may find the string functions str.isalpha(‘your string’)and
str.lower (‘Your String’)helpful! If you don’t know what these functions are you
could try typing help(str.isalpha) or help(str.lower) in your Spyder shell to see the
documentation for the functions.

Hint #3: Since the words in words.txt are lowercase, it might be easier to convert the
user input to lowercase at all times and have your game only handle lowercase.

Example Game Implementation:

You have 3 warnings left.
You have 6 guesses left.
Available letters: bcdefghijklmnopgrstuvwxyz
Please guess a letter: s

Oops! That letter is not in my word: _ a

You have 5 guesses left.

Available letters: bcdefghijklmnopgrtuvwxyz

Please guess a letter: $

Oops! That is not a valid letter. You have 2 warnings left: a

D. Game Rules:

1. The user starts with 3 warnings.

2. If the user inputs anything besides an alphabet (symbols, numbers), tell the
user that they can only input an alphabet.

a. If the user has one or more warning left, the user should lose one
warning. Tell the user the number of remaining warnings.
b. If the user has no remaining warnings, they should lose one guess.

3. If the user inputs a letter that has already been guessed, print a message
telling the user the letter has already been guessed before.

a. If the user has one or more warning left, the user should lose one
warning. Tell the user the number of remaining warnings.
b. If the user has no warnings, they should lose one guess.

4. If the user inputs a letter that hasn’t been guessed before and the letter is in
the secret word, the user loses no guesses.

5. Consonants: If the user inputs a consonant that hasn’t been guessed and the
consonant is not in the secret word, the user loses one guess if it's a
consonant.

6. Vowels: If the vowel hasn’t been guessed and the vowel is not in the secret
word, the user loses two guesses. Vowels are a, e, i, 0, and u. y does not
count as a vowel.

Example Implementation:
You have 5 guesses left.
Available letters: bcdefghijklmnopgrtuvwxyz
Please guess a letter: t
Good guess: ta t
You have 5 guesses left.
Available letters: bcdefghijklmnopgrtuvwxyz
Please guess a letter: e
Oops! That letter is not in my word: ta t
You have 3 guesses left.
Available letters: bcdfghijklmnopgrtuvwxyz
Please guess a letter: e
Oops! You've already guessed that letter. You now have 2 warnings:
ta t

E. Game Termination:

1. The game should end when the user constructs the full word or runs out of
guesses.

2. If the player runs out of guesses before completing the word, tell them they
lost and reveal the word to the user when the game ends.

3. If the user wins, print a congratulatory message and tell the user their score.
4. The total score is the number of guesses remainingonce the user has
guessed the secret wordtimes the number of unique letters in secret word

Total score = guesses_remaining* number unique letters in secret_word

Example Implementation:
You have 3 guesses left.

Available letters: bcdfghijklnopgquvwxyz
Please guess a letter: c
Good guess: tact

Congratulations, you won!

Your total score for this game is: 9

Example Implementation:
You have 3 guesses left.

Available letters: bcdfghijklnopguvwxyz
Please guess a letter:n
Good guess: dolphin

Congratulations, you won!

Your total score for this game is: 21

F. General Hints:

1. Consider writing additional helper functions if you need them.
2. There are four important pieces of information you may wish to store:

a.

b.

secret word: The word to guess. This is already used as the parameter
name for the hangman function.

letters guessed The letters that have been guessed so far. If they
guess a letter that is already in letters guessed you should print a
message telling them they've already guessed that but do not penalize
them for it.

guesses_remaining The number of guesses the user has left. Note that
in our example game, the penalty for choosing an incorrect vowel is
different than the penalty for choosing an incorrect consonant.
warnings remaining The number of warnings the user has left. Note
that a user only loses a warning for inputting either a symbol or a letter
that has already been guessed.

G. Example Game:

Look carefully at the examples given above of running hangman, as that suggests
examples of information you will want to print out after each guess of a letter.

Note: Try to make your print statements as close to the example game as

possible!

The output of a winning game should look like this. (The blue color below is only
there to show you what the user typed in, as opposed to what the computer output.)

Loading word list from file...

55900 words loaded.

Welcome to the game Hangman!

I am thinking of a word that is 4 letters long.
You have 3 warnings left.

You have 6 guesses left.

Available letters: abcdefghijklmnopgrstuvwxyz
Please guess a letter: a

Good guess: a

You have 6 guesses left.

Available letters: bcdefghijklmnopgrstuvwxyz

Please guess a letter: a

Oops! You've already guessed that letter. You have 2 warnings left:

You have 6 guesses left.
Available letters: bcdefghijklmnopgrstuvwxyz
Please guess a letter: s

Oops! That letter is not in my word.

Please guess a letter: a

You have 5 guesses left.

Available letters: bcdefghijklmnopgrtuvwxyz

Please guess a letter: $

Oops! That is not a valid letter. You have 1 warnings left: a
You have 5 guesses left.

Available letters: bcdefghijklmnopgrtuvwxyz

Please guess a letter: t

Good guess: ta_ t

You have 5 guesses left.

Available letters: bcdefghijklmnopgrtuvwxyz

Please guess a letter: e

Oops! That letter is not in my word: ta_ t

You have 3 guesses left.

Available letters: bcdfghijklmnopgrtuvwxyz

Please guess a letter: e

Oops! You've already guessed that letter. You have 0 warnings left:
ta t

You have 3 guesses left.

Available letters: bcdfghijklmnopgrtuvwxyz

Please guess a letter: e

Oops! You've already guessed that letter. You have no warnings left
so you lose one guess: ta t

You have 2 guesses left.

Available letters: bcdfghijklnopgquvwxyz
Please guess a letter: c

Good guess: tact

Congratulations, you won!

Your total score for this game is: 6

And the output of a losing game should look like this...

Loading word list from file...

55900 words loaded.

Welcome to the game Hangman!

I am thinking of a word that is 4 letters long
You have 3 warnings left.

You have 6 guesses left

Available Letters: abcdefghijklmnopgrstuvwxyz
Please guess a letter: a

Oops! That letter is not in my word:

You have 4 guesses left

Available Letters: bcdefghijklmnopgrstuvwxyz
Please guess a letter:Db

Oops! That letter is not in my word:

You have 3 guesses left

Available Letters: cdefghijklmnopgrstuvwxyz
Please guess a letter: c

Oops! That letter is not in my word:

You have 2 guesses left

Available Letters: defghijklmnopgrstuvwxyz
Please guess a letter: 2

Oops! That is not a wvalid letter. You have 2 warnings left:

You have 2 guesses left

Available Letters: defghijklmnopgrstuvwxyz
Please guess a letter:d

Oops! That letter is not in my word:

You have 1 guesses left

Available Letters: efghijklmnopgrstuvwxyz
Please guess a letter: e

Good guess: e e

You have 1 guesses left

Available Letters: fghijklmnopgrstuvwxyz
Please guess a letter: f

Oops! That letter is not in my word: e e

Sorry, you ran out of guesses. The word was else.

Once you have completed and tested your code (where you have manually provided
the “secret” word, since knowing it helps you debug your code), you may want to try
running against the computer. If you scroll down to the bottom of the file we
provided, you will see two commented lines underneath the text if name ==

AN ”

__main_ ":
#secret_word = choose word(wordlist)
#hangman (secret word)

These lines use functions we have provided (near the top of hangman.py), which you
may want to examine. Try “uncommenting” these lines, and reloading your code.
This will give you a chance to try your skill against the computer, which uses our
functions to load a large set of words and then pick one at random.

Problem 4
Hangman Part 3: The Game with Hints

If you have tried playing Hangman against the computer, you may have noticed that
it isn’t always easy to beat the computer, especially when it selects an esoteric word
(like “esoteric”!). It might be nice if you could ask the computer for a hint, such as a
list of all the words that match what you have currently guessed.

For example, if the hidden word is “tact”, and you have so far guessed the letter “t”,
so that you know the solution is “t_ _ t”, where you need to guess the two missing
letters, it might be nice to know that the set of matching words (at least based on
what the computer initially loaded) are:

tact tart taut teat tent test text that tilt tint toot tort tout trot tuft twit

We are going to have you create a variation of Hangman (we call this
hangman with hints and have provided an initial scaffold for writing it), with the
property that if you guess the special character * the computer will find all the words
from its loaded list that might match your current guessed word, and print out each of
them. Of course, we don't recommend trying this at the first step, since this will print
out all 55,900 words that we loaded! But if you are getting close to an answer and
are running out of guesses, this might help.

To do this, we are going to ask you to first complete two helper functions:
3A) Matching the current guessed word

match with gapstakes two parameters: my wordand other word. my wordis an
instance of a guessed word, in other words, it may have some _ ’s in places (such as
‘t_ _t"). other word is a normal English word.

10

This function should return True if the guessed letters of my word match the
corresponding letters of other word. It should return ralse if the two words are not
of the same length or if a guessed letter in my word does not match the
corresponding character in other word.

Remember that when a letter is guessed, your code reveals all the positions at which
that letter occurs in the secret word. Therefore, the hidden letter (_) cannot be one
of the letters in the word that has already been revealed.

Example Usage:

>>> match with gaps("te t", "tact")
False

>>> match with gaps("a le", "banana")
False

>>> match with gaps("a_ 1le", "apple")
True

>>> match with gaps("a_ple", "apple")
False

Hint: You may want to use strip() to get rid of the spaces in the word to compare
lengths.

3B) Showing all possible matches

show possible matchestakes a single parameter: my word which is an instance of a
guessed word, in other words, it may have some _ ’s in places (such as ‘t_ _ t).

This function should print out all words in wordlist (notice where we have defined

this at the beginning of the file, line 51) that match my word. It should print "No
matches found” if there are no matches.

Example Usage:

>>> show possible matches ("t t")

tact tart taut teat tent test text that tilt tint toot tort tout trot tuft

twit

>>> show possible matches ("abbbb ")
No matches found

>>> show possible matches("a_ pl ")
ample amply
3C) Hangman with hints

Now you should be able to replicate the code you wrote for hangman as the body of
hangman with hints then make a small addition to allow for the case where the user

1"

can guess an asterisk (*), in which case the computer will print out all the words that
match that guess.

The user should not lose a guess if the guess is an asterisk.

Comment out the lines of code you used to play the original Hangman game:
secret word = choose word(wordlist)
hangman (secret word)

And un-comment out these lines of code we've provided at the bottom of the file to
play your new game Hangman with Hints:

#secret_word = choose word(wordlist)

#hangman with hints(secret word)

Sample Output:
The output from guessing an asterisk should look like the sample output below. All
other output should follow the Hangman game described in Part 2 above.

Loading word list from file...
55900 words loaded.
Welcome to the game Hangman!
I am thinking of a word that is 5 letters long.
You have 6 guesses left.
Available letters: abcdefghijklmnopgrstuvwxyz
Please guess a letter: a
Good guess: a_

You have 6 guesses left.
Available letters: bcdefghijklmnopgrstuvwxyz
Please guess a letter: 1
Good guess: a1

You have 6 guesses left.

Available letters: bcdefghijkmnopgrstuvwxyz

Please guess a letter: *

Possible word matches are:

addle adult agile aisle amble ample amply amyls angle ankle apple
apply aptly arils atilt

You have 6 guesses left.

Available letters: bcdefghijkmnopgrstuvwxyz

Please guess a letter: e

Good guess: a__ le

This completes the problem set!

12

MIT OpenCourseWare
https://ocw.mit.edu

6.0001 Introduction to Computer Science and Programming in Python
Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu
https://ocw.mit.edu/terms

